|
随着农业生产模式和视觉技术的发展,农业采摘机器人的应用已逐渐成为了智慧农业的新趋势,通过机器视觉技术对农作物进行自动检测和识别已成为采摘机器人设计的关键技术之一,这决定了机器人的采摘效果和农场的经济效率。目前市面上最常见的是基于单片机开发的自动采摘机器人,但是随着人工智能的快速发展,通过建立神经网络基于大量图像数据训练的识别方法成为新一代智慧农业发展必不可缺的硬性条件。
智慧农业-图片来源于网络
升级农业生产机器人,主控芯片该如何选择呢?FPGA实时高速采集功能,搭配ARM端高性能处理系统 ,必然是机器人构建自动识别采摘系统最优解决方案。Xilinx公司的Zynq 7000 系列的芯片作为控制器,既可以完成机器视觉算法,又可以实现对机器人的控制程序。此外,FPGA特有的并行处理能力可同时对多个目标进行识别采摘,提高了采摘效率;在此期间,可以通过优化算法和训练学习图像数据,对果实好坏进行分拣。
农产品识别系统的工作流程可分为以下几个步骤:
(1)摄像头采集图像,将图像信息通过串口发送到FPGA,预处理图像数据。
(2)调用ZYNQ芯片的识别算法程序包,识别农产品的种类,成熟度,大小等相关信息。
(3)通过网络、多媒体接口把相应农产品信息显示在触摸屏和云端,实时监控画面并记录采摘信息。
(4)在通过FPGA和软件的协调下,对图像中水果坐标信息进行计算,控制电机运转机械臂对成熟果实进行采摘操作。
|
|