DS-5 Workshop: Linux Kernel and Application Debug, Trace and

Profile on Snowball

Copyright 2010-2013 ARM Ltd. All rights reserved.

@ D5-5Debug - C: ly
File Edt Navigste Search Project Run Window Help

(3~ o B~ J =

%% Debug Control L) Project Explorer

% vl b
%
% gnometris-beagle stopped (beagleboard.org - OMAP 3530)
5 Thread 1

= BlockOps-blockOkHere()+ 16 @ blockops-nochutter.cpp:62 (gnometris)
BlockOps:generatefallingBlock()+ 348 @ blockops-noclutter.cpp:311 (gnx
Tetris:gameNew()+ 184 © tetris.cpp:l 341 (gnometris)
= 0w082F78C @ libgobject-20.500 7

W& gnometris-beagle stopped

¢ blockops-noclutter.cpp Xaos 001 001 & main.cpp
°
2 -
- x1
for (int yl = 0; yl < 4; +4yl)
if (blockTable(b] (r])(x1][yl] && (x1 + x < 0)
eturn false;
b if (blockTable(b] [r][x1][yl] && (x1
return false:
if (blockTable([b] [r]([x1](yl] && (yl + y >= LI

xa0s-multithreaded- VXquadAS- ex

ometrs

+ x >= COLUMNS))

INES))

nple 001 001.apd - Echipse

SRR
25 (4% 055 Debug)

omm istory cnpts. emot Termi 9+ Vanables ‘o Breskpoints @e Registers 7' Expressions
G H & Scrip Remot 7T 9= Variabl % Breskpoint Regist E
» &
ecution ot T
ead 1 (0S ead 1d € P Type
024 54 g - ocal v
@ this BlockOps* const
© useTarget
0x0001024 @ field L
ad 1d 614) © blocknr int
£ (blockTable(b [x2 = int
colo int
Command: bresk BlockOps::blockOkHere Submat < .
11[11} Disassembly Memory Modules| 5= Outline| ¢ Trace

Address

B Timeiine| ;¥ Call Paths @ Func

| FWBY Fle Edit Fractal Calculation Filters Ul Misc Help

v <Next Instruction>

W Console

s 1692540100

xa0s-multithrcaded-VXquad
25-Jon-2011 15,2636

100
Opcode Disassembly
PUSH
ADD

suB

{r4-ril1})
ril,sp.#

SUB
LDR
LDR
LDR

""" CEX

Game Settings Help

Progress |) Error |

This workshop demonstrates the features of the DS-5 Debugger by debugging and tracing U-Boot, the Linux
kernel and a game called Gnometris that is an ARM Linux application running on the target. It also
demonstrates the ARM Streamline profiler using an application called Xaos. It will introduce the views of
DS-5 Debugger and ARM Streamline and demonstrate their features. Some of the features are used in
explicit instructions that you are expected to follow and are marked with this symbol =>. Other features are
only mentioned and are not critical to the flow of the workshop. You don't have to use them, but you are
generally encouraged to try them out anyway.

We will use a Snowball board as the target, but DS-5 can also be used with any ARM Linux target that has
networking or the Real Time System Models that come with DS-5. The Gnometris and Xaos applications
that we will be using are supplied as examples with DS-5.

(version 31 January 2013; v5.13 d1622; HW; HWCortex-A9; DSTREAM; DSTREAMLinaro; DSTREAMSnowball; Snowball)

Contents

DS-5 Workshop: Linux Kernel and Application Debug, Trace and Profile on Snowball
[=T =T = 1[0 o [P EURR PP
[(01 RS T =3 (U o PP
TAIGEE SBIUD e
Starting Eclipse.........ccccceevvneeen.
Installing a DS-5 License
Bare-metal Debug and Trace (U-Boot)
Setting up your own target: Download, build and setup U-Boot
Connect the NArdWArE............cocuiiiiiiie e
Debugging U-Boot on the target
Quick tour of the debugger
Trace VIEWcocoveveveernienneennne, "
REOISTEIS VIBW ..ottt oottt et e oottt e e oo ookttt et e e e e e o et aeeeeeee e e e e saeeeeeeeeeeaasnsbe et e e e e e e e nebeeeeeaeeeeamsbeeeeaaeeesannnnnseeeaeesaannnsbeeeaaens
LTz Lot o o Lo 1 PO P PP PP
Functions viewcccccceeerenee
Kernel and module debug
Setting up your own target: Download the Linux kernel symbols and SOUICEScooieeiiiiiiiiiii e
Debugging the kernel before the MMU iS ON........ccuvviiiiii i
Debugging the kernel initialisation after the MMU is on
Peripheral Registers
Application debugccccueeeeieeerinis
Starting the X server on the Host... .
[l ele] gilaTe J €T aTo] o o l=] (TP P PP UPPPPPTI
CONNECHNG TO TNE TAIGETeeieitiie ettt e et e oo et e oottt e ok e et e e oh b et e e o b b et e e ab et e e e b st e e e bbbt e e e abee e e s nnbeeeeantreeenas
Debugging Gnometris on the Target
Detailed Debugging
FUNCHIONS VIBW ...ttt ettt ettt h ekt h e ekt e bt e E et ekt 41kt e b bt 41k e £ e b bt e 4h e e bt e ek et e b et e ab e e e be e e nbneenbr e e nbneennneeas
BreakpointS.......ccccovveveveeiiiiene e,
Source and Disassembly views
Variables view
Stepping...............
Registers view
Debug Control view
Call Stack........coovvveeriiiiiiieniinns
Play the game .
(=T aaTTaTo R {aT o T= La TSP URRRPRRI
(o LTSS (0T Y 1= PP
Expression Inspector view "
IMEBIMIOTY VIEW.....eeieiiteee ettt ettt ettt e e 42ttt oo st 4442 b et e 4k E et e 4R ket e 442 R bt e 44 EE et o4 a R et 444 a b s e e a4k b et e e e et e e an b b e e e e nb et e e ann e e e s nree s
COmMMEANAS ANA HISTOIY VIEWSeiiiiiiieiiiite ettt ettt e s st e et e e ekt e e s e et e e aa b bt e e e b b et e e e s b et e e aab st e e e bbbt e e anbe e e e s nbneeeeantneeenas
Scripts view .
=T oo Yot] o] £ PP UPTT R TPPPPPPP
SNOW OFf WOUF SKIIIS ..ottt ettt e oo oottt e e e oo e aa bbbttt e e e e e s a bbbttt e e e e e aaab b b et e e e e e e e nnbbbeeeeeeeeennnnnees
Advanced BreakpointS..........ccueveeiieeiiiiiiiiiieeee e
More features in Source and Disassembly views
Shared Libraries and Modules view
(O3 F=TgTo T o) i (o] oo O T T OO PP PPPPPPPRPON
ARM Streamline Workshop using Xaos 0N SNOWDAILuuuuiiiiii s
Introduction to ARM Streamline
Preparationccccevvviveininnecnne,
Host Setup...........
Target Setup........
Starting Eclipse
Installing a DS-5 License........... -
[g ool q 11 oo Da = oL TP PP UPTT R PTOPPPPP
[el I Yo (o (g T = T [A TP RP PP PP
Set the Capture Options .
(0] 010 0TI OTe T] 01 (=] £ T PP PP PP PPPPPPPPPP
Capture SOME PrOfilE TALAoii ittt e e st e ek b et e e s ab et e e s bb et e ek bt e e aab et e e e eab et e e e nbb e e e enbe e e e nnnee
Examine the RePOIt........ooouiiiiiiiiiiiieeeee e
Timeline view — a first look at the Streamline report
Configuring Charts.....................
Power analysis.........
Call Paths view
Functions view.....
Code view............
Call Graph view
Y £= ol QYT U T T TPPRTPTRP
(oo RV TN AT o Lo Y gl o] = L1 o L TP PPT PP

page 1 of 99

P aNe)Y Ta ot IS d (=T a 1T L= TSR 80

REaNAlYZE StrE@MIINE TALA. ettt e oottt e e e e e ettt et e e e e e e e n e taeeeeae e e s e sbbeeeeaeeesannnsseaeaeeeaannseneeaaans 80
[paTole] g O] o] (0] (=1 PP PP PP PP PPPPPPPPPPP 82
TrouBIEShOOING SIIEAMIINEuiiiiiiii i e ettt e e e e ettt e e e e e e e bt it e et eeeeasasattseeeaaeeaaasbaeeeeaeeesanssaaseaeeeessasssnneaeaeesaanes 83
S F Yot (o T B I=T o1 To o [To RS TSP 84
Debugging an application that is already FUNNINGcooiiiiiiieiie e e e e e s e e e e e s s e e e e e e e e s essbbrreeeeeesaasantreeeeaeas 84
PaXo \VZ= g od=Te D T=T o TH Lo I @do]q) o [V T r=1i o] TP OPPPPPPRN 85
Debugging Threads (“EXIra Credit”)u i ettt e st e e st e e e et et e s n et e e e r e e e enn e e e e nanes 85
[D1=ToT0 oo [TaTe el a1 TSI = S 1 PRI 86
Other DS-5 fEAtUrES YOU QIAN'T SEE.......eeiiiiiii ettt oottt e e e e e e e eat et e e e e e s e e s aeteeeeaaeaaanneteeeeaaeeaansbeeeeaaeeeaannbseeeaaeeeeansnnns 86
111 T | RTUPTPRI 86
PN o] 01T le [A Y= (0 o PR UR TP 87
[(015 RS T =] (U o PP 87
[[ggl ool qtlaTe [o] o] [=Tox (- RU T PRR PP 87
[TggloToTqtlaTe le 1S 1] o 101 o] o TR PRSPPI 87
([T oToTqtTaTe [€T o] a0 L] 1 PRSPPI 88
(0 gF= T o T o T €T aTe] s a1= 1 ST PRRRTRP 89
[T oo Tu 1T oo D= Vo 1= F PP PRI 90
(Of =Nl o - W =T o =] A @o oo T Tox 1T o PRSP PRRRT 90
PN o] 01T ale [0 S TS LoV o - | PSR R PP 92
Board detailS @nd CONNMECTIONSc.uiiiiiiiit ettt s b et b e e sh e e bt e s he e e sbe e e sbe e e e bs e e sbneenbb e e sereenareen 92
Write a target image t0 @ MICTOSD CAIUcciiiiiiiieii e e et e e e e et e e e e e et e e e e e e e e s bbb e e e eeeeesasbaseeeeeeesssbaaaeeeeeessnssarreeeeeesannes 92
S Y=TA - 1= 0 o SRS PRPPTPP 92
Flash an eMMC image t0 the DOGIM.ei i ettt e e e e e ettt e e e e e e e e tbee e e e e e e s annteeeeeaeesaannnnbeeeaaens 94
LINAIO LINUX TANGET SETUPD ..eeiuetiieiittieeeittie e ettt ettt e e sttt e et e e sttt e ek et e e st et e e 1a b bt e o4k bt e e o s b et e e 4a b s e e e ek b et e e ab et e e an b b e e e e s be e e e nnnneeesnreees 94
(R =ToTo o [l][=To Ir=TaTe o =T o 1N Lo IEST= U] o B PP P PO PP PP PPPPP 95
Linux kernel download and AEDUG SETUD.uiiiiiiieiiiit ettt e et e e st e e e et bt e e aa et e e s b b e e e e abbe e e e anneeeennneeas 95
Kernel module debug (modex) Build @nd SETUPcccuuiiiiiiiie et e e et e e st e e e snte e e e sneeeesnnaeeas 97
ST it aTo I TS = Lol o To (o [(= SRR TRRRRUPRI 98
F Y I = a1 (o | A o (o] oI (o L PP 99
Preparation

If the host and target have already been setup for you, you can skip down to Starting Eclipse below.
Otherwise you’ll need to start by installing some software.

Host Setup

DS-5 can be used on Windows and Linux hosts. If your host has not already been setup for you then you
will need to follow the instructions in the appendix on page 87

Target Setup

For the workshop you’ll be supplied with a Snowball board that already has U-Boot, a Linux kernel and root
filesystem on it. If you want to setup your own target please see Appendix B: Snowball: Linaro Linux target

setup page 94.Serial setup

Starting Eclipse

= Start > All Programs > ARM DS-5 > Eclipse for DS-5 and choose a location for the workspace
where Eclipse projects will be stored. The default workspace location is fine.

= If this is the first time you've started DS-5 you will see the "Welcome to ARM DS-5" home page;
click Go to the workbench. You can get the Welcome page back if you want it later by choosing Help
> Welcome.

Installing a DS-5 License

In order to use DS-5 for this workshop you will need to have a license for DS-5 Basic Edition, either a full
or evaluation license. (A license for Professional Edition will also work.) If the workshop has been setup
for you then you will already have a license. If you don’t have a license a dialog will open with an
explanation and a button to Open License Manager.... You can get an evaluation or full license by opening
the license manager using Help > ARM License Manager..., clicking the Obtain License... button and
following the instructions. You will need to be connected to the internet. When you receive the license file,
you need to add it by using the Add License... button.

page 2 of 99

Eclipse views (a brief digression)

The Eclipse window is divided into a number of rectangular panes. Each pane contains one or more views.
Each view has a tab at the top with the view’s name. For example, in the screenshot on the cover, Debug
Control, Project Explorer and Remote Systems are three views in the same pane. Views of source files
are named after their files, for example main.cpp.

You can easily rearrange panes and views. Dragging the dividing lines between panes changes their size.
Clicking on a view’s tab brings it to the front. You can drag a view’s tab to move the view to another pane
or to split a pane vertically or horizontally. You can even drag a view out of the Eclipse window entirely to
create a new window. Double-clicking on the tabs of a pane will expand the pane to fill the window
(maximize). Double-clicking it again will restore it down.

You can close a view by clicking the close button in its tab. If a view you want is not open, you can open it
by using the Window > Show view > menu.

A particular grouping of views is called a perspective. For example, there is a DS-5 Debug perspective that
we will be using, but there is also a C/C++ perspective and others. Eclipse provides ways to switch quickly
between perspectives and to create your own custom perspectives from a group of views.

Some of the DS-5 views such as Variables, Expressions, Registers, Functions and Modules have
columns. You can change the width of the columns by dragging the dividing lines in the column headers
right or left. You can change which columns are displayed by right-clicking on the column headers and
choosing from the context menu. In Functions and Modules you can sort by any of the columns by clicking
on the column heading. If you shift-click a different columns you can set further minor sort keys which
shows as the sort arrow and two or more dots.

There are more things you can do, such as minimizing panes and setting views to be pop-up “Fast Views”,
but that’s probably enough to get you started.

Getting help (more digression)

You can press the F1 key (or Shift+F1 on Linux) at any time to get help about the current view. You can
use Help > Help Contents > ARM DS-5 Documentation to view the documentation. You can access
cheat sheets for various tasks using Help > Cheat Sheets > ARM ..., for example importing the example
projects. (But we won't be following those cheat sheets here.)

page 3 of 99

Bare-metal Debug and Trace (U-Boot)

First we are going to debug the U-Boot bootloader. It is some of the earliest code run by the processor after
reset. It is responsible for initializing the hardware (for example, power, clocks, memory controllers, etc.),
reading the kernel into RAM, setting up the kernel parameters (for example, the kernel command line, also
known as the bootargs) and jumping to the kernel. U-Boot is a “bare-metal” program which means that it
runs directly on the processor and does not use or need an operating system “beneath” it. U-Boot does not
use the MMU and runs on a single core even in a multi-core system. U-Boot also has a command-line
which we will use during our debugging.

Setting up your own target: Download, build and setup U-Boot

If you are running this workshop on your own host you will need to do some setup to build and debug U-
Boot. You can download the U-Boot sources using the Ubuntu package manager on the target and then build
it on the target. Once built, the sources and symbols can be copied to your host and used during the debug
session. To complete your own setup please follow the U-Boot download and debug setup instructions in the
appendix on page 94.

Connect the hardware

=> Connect the DSTREAM unit to its probe box using the 100-conductor ribbon cable. (Be sure to
count the conductors! (Not really.))

=> Connect the DSTREAM unit to the host using a USB cable. The DSTREAM can also be connected
via Ethernet. In this workshop we will use USB since we will be using Ethernet to connect to the target
for application debug later. The DSTREAM is used to control the target when debugging at the bare-
metal (U-Boot) and kernel level.

=> Connect the DSTREAM power (5V). Do not connect the target’s power yet because we don’t want it
to boot yet.

=> Connect the JTAG port of the Snowball board to the port labelled ARM JTAG 20 on the DSTREAM
probe box using a 20-conductor ribbon cable.

=> Connect the 5V power cable to the target, but don’t press the blue power button yet. Connect the
serial port of the Snowball board to the host using a USB cable and connect the Serial view. See the in
the appendix on page 92.

When the power button is pressed the target will run Xloader and U-Boot from the builtin eMMC. U-Boot
will write various messages to the serial console and, if no input is given within a few seconds, load and
boot the Linux kernel. To debug U-Boot, we want to stop it at its command line.
=> With the Serial view already connected, press the blue power button to boot the board.
U-Boot should begin printing.
=> Quickly type space or return in the Serial view to stop U-Boot at its command line:
B Serjal 2 =8
SZriaI: (COM27, 115200, 8, 1, None, None - CONMECTED)
S EEE & -

after ENABLE_L2CC -
Before call normal

U-Boot 2889.11 (Mar 28 2812 - 23:18:21)

CPU: ST-Ericsson db8588 v2 (Dual ARM Corte
I2C: ready
DRAM: 1 GB

MMC:

MCDE: startup failed

EMMC: &, MMC: 1

In: serial

Out: serial

E serial

Net: smc911lw-8

Hit any key to stop autoboot: @
snowball % -
o 1T F

m

page 4 of 99

If nothing happens, try disconnecting and reconnecting the target power again. When you remove power
from the Snowball, the serial connection will be broken and the Serial view will begin repeating Bad file
descriptor in nativeavailable. Click the Disconnect button (¥*) in the Serial view, reconnect the
power (without pressing the power button) and then click the Connect button (%)),

You can try typing nelp and other U-Boot commands, but leave U-Boot at the command line when you
finish experimenting.

Debugging U-Boot on the target

In this section we will use DS-5 to load the U-Boot we built on the target. We will load U-Boot into the
target’s RAM as the binary on the eMMC may be different from the one that we’ve built and have debug
symbols for.

Next we will examine or create a debug configuration so that DS-5 can connect to the target.
=> Change to the DS-5 Debug perspective Window > Open Perspective > Other... > DS-5 Debug
=> Choose Run > Debug Configurations... then expand DS-5 Debugger
The U-Boot debug connection may already have been created for you in which case you can just select it,
examine the settings, choose the DSTREAM unit and set the DTSL Options. (If the Gnometris and Xaos
example projects have already been imported, you will see four debug configurations, gnometris-
gdbserver-example, gnometris-RTSM-example, xaos-gdbserver-example and xaos-RTSM-example in
the Debug Configurations dialog which we are going to ignore for now.)

= If there is no U-Boot debug connection as a child of DS-5 Debugger, then create one: select DS-5

Debugger and click the New launch configuration button (|.7) to create a new debug configuration.
(You can also double-click DS-5 Debugger or right-click it and choose New instead.)

= Debug Configurations

Create, manage, and run configurations

Create, edit or choose a configuration to launch a D5-5 debugging session.

VR,} | = 5 Configure launch settings from this dialc
el s - - - Press the 'New' button to create a
| Mew launch configuration |-

C/C++ Application =| - Press the 'Duplicate’ button to cop

o | C/C++ Attach to Applicat
[E] C/C++ Postrnortem Debu

x

- Press the 'Delete’ button to remow

[£] C/C++ Remote Applicatic || 5 - Press the 'Filter’ button to configui

a4 |5 DS-5 Debugger
45 gnometris-gdbserver-
#5 gnometris-RTSM-exar
5 waos-gdbserver-sxamy || Configure launch perspective settings fro

- Edit or view an existing configurati

5 waos-RTSM-example
&' Iron Python Run

= Give the debug configuration a name, | used U-Boot.
In the Connection pane of the debug configuration we need to specify the platform and choose the
DSTREAM. The plaforms list contains the large number of platforms that DS-5 supports by default
arranged as a tree by vendor.

=> Type sno in the Filter platforms filter box so that the only the matching platforms are shown.

= Expand CALAO Systems > Snowball >Bare Metal Debug in the platforms list.

= Select Debug Cortex-A9_0 via DSTREAM/RVI.

page 5 of 99

= Click the Browse button and choose the DSTREAM unit and click OK. Your Connection number
will be different than shown.

MName: |U-Boot
=<It- Connection un_.-} Files | £5 Debugger| (9= Arguments | B§ Environment | 3 Event Viewer

Select target
Select the manufacturer, board, project type and debug operation to use, Currently selected: Calao_Systems - Snowball

sno

a CALAQ Systems
4 Snowball
4 Bare Metal Debug
Debug Cortex-A8 0 via DSTREAM/RVI
Debug Cortex-A3_1 via DSTREAM/RVI
Debug Cortex-A3:2 SMP via DSTREAM/RVI
Linux Application Debug
Linux Kernel and/or Device Driver Debug

m

DTSL Options | Edit.. | Configure trace or other target eptions, Using "trace-core-0" configuration options
D5-5 Debugger will connect to a DSTREAM or RVI to debug a bare metal application. = Select Debug Hardware @
| Access Host Name IP Address Hardware Type
Connections
|| USB 000227 127.00.2 DSTREAM
Bare Metal Debug | Connection USB:000227 | Browse... | ‘
7 r = N EE—
'\z.-' 0K | | Cancel |

The tracing options are configured in a separate DTSL configuration. “DTSL” stands for Debug and Trace
Services Layer. We’ll enable tracing on core 0.

= Click the DTSL Options Edit... button to open the DTSL Configuration Editor dialog box.

= Click the Add button (+) to create a new DTSL configuration.

= Give the new DTSL configuration a name, | used trace-core-0.

= In the Trace Buffer pane, change the Trace capture method to On Chip Trace Buffer (ETB). The
Snowball doesn’t have a connector for external (TPIU) trace.

= In the Cortex-A9 pane, check Enable Cortex-A9 core trace and uncheck Enable Cortex-A9 1
trace since U-Boot only runs on core 0.

=> Check Cycle Accurate so that the trace data will include cycle count (although this will mean that
fewer instructions fit into the ETB).

= DTSL Configuration Editor

Debug and Trace Services Layer (DTSL) Configuration
Add, edit or choose a DTSL configuration for file : dtsl_config_script.py, class : DtslScript

EEREER ¢ Mame of configuration: trace-core-0
default
TraceBuffer . Corter9 Sstem

Trace capture method On Chip Trace Buffer (ETE)

Trace Buffer | Cortex-A9 - System
/| Enable Cortex-A9 core trace

/| Enable Cortex-A2 0 trace
Enable Cortex-A9 1 trace
PTM Triggers halt execution

/| Enable PTM Context IDs

Context ID Size 32 bit

V| Cycle Accurate

Trace capture range

0

OxFFFFFFFF

page 6 of 99

You can leave Enable PTM Context IDs checked. U-Boot doesn’t change the context ID so how we
set it won’t matter. You can disable Cycle Accurate trace if you want more instructions to fit into the
ETB. It’s also possible to setup an initial trace capture range to limit what instruction addresses are
captured, but we don’t want to do that.

= Click OK in the DTSL Configuration Editor dialog box.

The Debug button is disabled because the debug configuration is not yet complete. The problem is
explained near the top of the dialog: [Debugger]: Debugging from a symbol, but no symbol files defined
in the Files tab. We will fill in the missing details in the other panes.

The Files pane of the debug configuration allows us to specify an application to download and symbols
(debug information) to load. We’re going to reload the U-Boot on the target so that we can be sure the U-
Boot on the device matches the symbols we have.

We need to specify the location of the u-boot binary containing symbols (debug information):
= In the Files tab under Application on host to download, click the Workspace... button and select
the u-boot binary from the project u-boot-ux500/u-boot-ux500-2009.11/u-boot
=> Check the Load symbols checkbox:
Marme: U-Boot

-4e- Connection | [{g} Files &5 Debugger| 9= Arguments | B Environment | B3 Event Viewer

Target Configuration = Open = @
Application on host to download: Select a file:
S{workspace_loc:/u-boot-wdS00/u-boot-uxb00-2009.11/u-boot}
N 4 = u-boot-ux500 -

- | - | =i
i o
File Syster... !_Wo rkspacel‘ 1

» = ARMCM3co_lib
+ = MyDevice_lib

Files + = .mytarget_Undefined_lib
|Load symbols from file - 5 -project

- 12 myregs.tef

|;| 4 = u-boot-wx500-2009.11

| File System... | |W0rkspace... gitZe

post
rules.mk
. [= tools
u-boot

=]

u-boot-rpmlintre
u-boot-uB500.changes
u-boot-uB500.spec
u-boot.bin

m

u-boot.map -

{?‘j 0K] | Cancel |

In the Debugger pane of the debug configuration:
=> Choose Debug from entry point so that DS-5 will load U-

Boot and set the program counter to the entry point but not start
running it.

<4e= Connection Hﬁ- Files | £5 Debugger . (= Arguments | [
Run control

Connect only @ Debug from entry point Debug f

=> We need to disable the I-Cache for this example. Check the

Execute debugger commands and enter
set var $CP15 SCTLR.I = 0

You can specify debugger scripts and/or commands to execute as
part of the connection process. The dialog fields have tooltips
that explain at what point during connection the scripts and

page 7 of 99

Run target initialization debugger script (.ds / .py)

Run debug initialization debugger script (.ds / .py)

| Execute debugger commands

set var SCP15_SCTLRI=0

commands are executed. An example would be to use the Execute debugger commands field to stop
the target and load the debug symbols or disable some breakpoints and enable others. The script files
can be written in either the simpler, gdb-like, DS-5 command line scripting language (. ds files) or the
more powerful and complex scripting language Python (. py files).

You can specify the host working directory which affects certain debugger commands that access the
host file system (for example dump, 1og and source). The default is fine.

You can use the Paths list to specify directories that DS-5 should search for source files but we don’t
need to use it for U-Boot and can just leave it empty.

The Arguments and Environment panes don’t apply to bare-metal debugging, so just leave them blank.

The Event Viewer pane is used to configure display of any ITM or STM information in the trace stream.
We won’t be using it on our target, so just leave it blank, too.

= Click the Debug button. If the Debug button is disabled then Eclipse will put a message explaining
why at the top of the Debug Configurations dialog. If the Confirm Perspective Switch dialog appears
check Remember my choice and click OK.

DS-5 will connect to the target and load U-Boot into memory. The program counter will be set to the entry
point of the image. You can see the target connection in the Debug Control view.

&5 Debug © 22 [Project | 4§ Remote | [+ Streamli ~ B | @ Commands 3 B History| % Scripts = B |[6d= vari 22 . %
SRR LA SN - BEaES-%"
W U-Boot connected Q;;‘; Linked: U-Boot -
Wl l\J.IIE (= F g ey R) }" e ST b'\bUUUEJ.ﬂb AU = N
5 Cortex-A9_0 #1 stopped set debug-from *SENTRYPOINT i Llame
= 005608000 start =+ = Locals
Starting target with image C:\Users\sdouglas\Do + = File Statics (c
Running from entry point + (= Globals

wait

Execution stopped at: @x@5603080

In start.5

ax@5605088 36,8 _start: b reset
set var $CP15 SCTLR.I = @ i

m

4 11 3

Pl m }

‘ U-Boot connected Command: Submit
8] start.5 &3 = B[4l Disassembly I ‘H Memery| = Modules| =] Bw

¥ y
31 B 4:9 Linked: U-Boc
32 #include < fig.h> -
neuae scontog tay g/ v =MNextInstruction=

33 #include <version.h:
34 Address Opcode Disassembly

35 .globl _start start

% 35 _start: b reset % | exesceseen B reset ; BxS56
37 ldr pc, _undefined_instruction BxB5 608064 LDR pc, [pc,#28]
33 ldr pc, _software_interrupt AxA5608005 LDR pc, [pc,#28]
39 ldr pc, _prefetch_abort @xB560866C LDR pc,[pc,#28]
4@ ldr pc, _data_abort @x85668810 LDR pec, [pc,#280]
41 ldr pc, _not_used @x85668014 LDR pec, [pc,#280]
42 ldr pc, _irg BxB5688015 LDR pc, [pc,#28]
43 ldr pc, _fig BxB568881C LDR pc, [pc,#28]

[When U-Boot runs you need to type a character to the serial port to stop it from autobooting Linux. In some
cases the default boot delay can be very quick, and before you blink the Linux kernel boots. If this happens
the debug connection will probably stop on an exception with the pc near address 0xFFFF0000 With the
MMU on, which will prevent the debugger from loading the u-boot image. If this happens you need to
disconnect the debug configuration, unpower and repower the board, re-establish the serial connection, push
the blue button and try to be quicker.]

We can place a breakpoint in the main_loop function to stop boot process and change the boot delay time:

= In the Commands view type thbreak main.c:399 and press return to place a temporary hardware
breakpoint in the function main_loop. Later we’ll see how to set breakpoints in other ways.

page 8 of 99

= Click the Continue button (|¥) in the Debug Control view. The debugger will stop on line 399 in
main.c. Because the breakpoint was temporary it was deleted automatically.

= Find the variable bootdelay in the Locals folder of the Variables view and change its value to 60.
Or you can type set var bootdelay = 60 in the Commands view and press return.

#5 Debug C 22 _[{5 Project | 48 Remote | [Streamli| = O || Bl Commands &2 I History| %8 Scripts = O |[69= Vari 22 . 6 Bre |70 Reg| ¥ Bp | 1) Fu
. | = T o
SRR TSRS R Ol B REBS %~
‘ U-Boot connected <;==(> Linked: U-Boot ~ <'===(> Linked: U-Boot ~
*Cortex-}\g_l)#lstopped on breakpoint Hardware breakpeint 2 at @x@561A35C o Name Value Type|!
= main_loop+0x44 . on file main.c, line 399 =+ = Locals 3 variables
= mboot+0:A2C “'alt, @ s Unavailable char®
— continue bootdel -
- Execution stopped at breakpoint 2: @xB561A95C 0 gORE-ay] - Se
= In main.c @ p Unavailable char*
BxB561A95C 399,80 s = getenv ("bootomd"); =|| B (= File Statics (current)
Deleted temporary breakpoint: 2 = B = Globals
set var bootdelay = 6@ Z
4 (1] L3
4 1 b
‘ U-Boot connected Command: thbreak main.c:399 Submit a i
start.5 Lgl main.c &2 = 8w Disassembly 22 ‘B Memory| = Modules | ;= Events 5= Outline B Serial
(unsigned)bootlimit); -
s = getenv ("altbootecmd");
} 3 (s %Linkecl:Uchct'
else] g = <Mext Instruction> 100
#endif /* CONFIG_BOOTCOUNT_LIMIT */
s = getenv ("bootcmd™); Address Opcode Disassembly
BxB85614058 MoV r2,#axa
481 debug ("### main_loop: bootemd=\"%s\"\n", s ? s : “<UNDEFINED: BxB561A954 BL simple_strtol ; @x562313C
462 @ @xB561A958 MoV rd,rd
483 if (bootdelay >= @ && s & l!abortboot (bootdelay)) { % | exB561A95C LDR ra, [pc,#220] ; [@x5361AA40] = @x563
4pa# ifdef CONFIG_AUTOBOOT_KEYED 6x8561A968 BL getenv ; @x5614464
485 int prev = disable_ctrlc(1); /* disable Control C chechk Bx@561A964 ADDS r3,rd, %
166 # endif BxB561A968 MoV rs,ré

AuACcT Aner presps e

= Click the Continue button (LB,

Presto, in the serial console you should now see U-boot counting down from 60 seconds. This should be
ample time to stop U-Boot from auto booting Linux.

= In the Serial view, press any key to stop U-Boot before it finishes counting down.

In the some of the steps above, we used the Commands view interface to control the debugger. Don’t worry
you don’t need to remember all these commands. All the commands can be done through the DS-5
Debugger Ul and we will go through them in the remainder of the workshop. And the command-line has
pop up Content Assist help available, which we’ll also show later.

= Send a few characters to the target, but not return, by typing them into the Serial view. We’ll see
them in the debugger in a minute.

= Click the Interrupt button ('““.) in the Debug Control view to stop the target:

page 9 of 99

Now we can see that we’ve stopped in the function p101x_getc, Which seems reasonable as u-boot is

waiting for serial input. You may have stopped on a different instruction.
5 Debug 2 I Project ﬂERemote v Streamli = 0|/ @ comman 2 B History “'%)Scripts = 0Ollw=v = 9 B|m R §§YE i

SRR TSRl - e BEED &~
W U-Boot connected - <‘|='=5 Linked: U-Boot - <‘|='=5 Linked: U-Boot
ik Cortex-A9 0 #1 stopped SEFtva’ bootdelay = &8 ~ Name Val
= E Wal — =
= pll)llx_getc-:ﬁ)f(? continue = I-_ocals 2\rar|al
= senal_gercriel interrupt © data Unava
Execution stopped at: @x@568E46C @ portnum Unavai
(28 In serial plelx.c + (= File Statics (current)
g Vel - ||| ex856BE46C 216,88 while (IO READ (pc ™ || (= Globals
4 L [3 1 Ll C
W U-Boot connected Command: Submit | ||| , =
€| main.c l.e] serial_pl0lx.c &5) = 813 bis 2 ‘B Me| E Mo| = Ev| 5= Ou = B || {2 Serial 53
211 static int plelx_getc (int portnum) = &7 7 ||Serial: (COM27, 115200, 8, 1, None, None -
2124 : 2 B iE GE
213 unsigned int data; 5 Linked: U-Boot ¥ o e EBSBBNEJ o
214 tay g+ <NextInstructior 100 I2C: éllrlcsson v2 (D
215 /* Wait until there is data in t ¢ ready
& 216 while (I0 READ (port[portnum] + 1 Addre_ss Upcode D|&ssembly 1 DRAM: 1 GB
217 WATCHDOG_RESET(); serial_getc - | pac .
218 BxB560E464 MoV ri,#8x780€ MCDE: startup failed
219 data = I0 READ (port[portnum] + Bx@56BE465 MOVT ri,#@xB0eE sec_bridge: ISSWAPI_FLUSH_BOOT_Ci
220 B % | Bx@560E46C LDR r2,[ri,#ex | [EMMC: B, MMC: 1
221 /* Check for an error flag */ BxB56PE470 MoV r3,#8x780€ In: serial
222 if (data & exFFFFFFe@) { @xB560E4T4 MOVT r3,#exsese |(Out: serial
223 /* Clear the error */ BxB56BE4TE TST r2,#8x18 Err: serial
224 I0_WRITE (port[portnum] + UA BxB56BEATC BNE serial get |Met: smcOllx-8
225 return -1; BxB56BE430 LDR ra,[r3,#8] Hit any key to stop autoboot: @
226 1 - Bx@568E484 BICS r2,rg,#axt - ||Snowball %

[If you see no functions in the stack and the pc is at an address like 0xc00xxxxx then you have not stopped
in U-Boot and the kernel has booted. Reset the target (power off and on) and stop U-Boot from booting the
kernel by typing to the Serial view.]

The current PC location is shown by an arrow (=) in the left margin of both the source and Disassembly
views and by the dark green highlighting. The light green highlighting in the Disassembly view shows all
of the assembly instructions that correspond to the current source line.

If the processor supports debugging both TrustZone worlds then memory addresses for Normal world are
prefixed with n:, while addresses in the Secure world are prefixed by an s:. If the processor doesn’t support
TrustZone, or has been configured so that it is only possible to debug Normal world then the addresses will
not have a prefix.

Notice how the actions that you have performed so far, like interrupt have been recorded in the
Commands and History views. If you want to automate that part of connecting to the target, you could
copy them and paste them into the Execute debugger commands field of the Debugger pane of the debug
connection.

Quick tour of the debugger

Now we’ll show a few of the features of the various debugging views. Most of them will also be discussed
in more detail in the application debugging section later.

In the Debug Control view we can see the call stack with the frame of the current function at the top and its
caller below it and its caller’s caller below that and so on. You can see in the Variables view that the
current function, p101x_getc, has no local variables.

Let’s do some stepping:

= Click the Step (into) button (/=" F5) in the Debug Control view.
This will continue the program until the current source line is finished. That will happen when you type a
character to the target, so

=> Type a character to the Serial view.
page 10 of 99

The target stops again on the data = 10 READ... statement because the step has finished.

= Click the Step Out button (\=*/; F7). This will cause the target to continue until pl0lx_getc returns
to its caller, serial getc.
The stack frame of p101x_getc is no longer shown in the Debug Control view. The value returned will be
in register RO.
= Look in the Registers view and expand the Core registers folder. The value of the character you
typed is in RO.
=> The ASCII number in hex is displayed in RO. You can quickly display the character by adding the
expression (char) $R0 to the Expressions view or typing print /c $RO in the Commands view
console. (The character | typed was D)

B Cormmands &3 . [History| % Scripts = O |[t4= Variables | ® Breakpoints | Registers | X" Expressions 2
Bl Ge bl o~

— <'===(> Linked: U-Boot = 4;;‘} Linked: U-Boot -

o

finish m MName Value |Type Count Size

Execution stopped at: @x@568DACE © (char)SRO ‘D" char 8

exeseenace 19@,@ ¥ @

print /c $R®

%6 = 68 'D’ 57

4 1]

Command: print /c R0 Submit

It is also possible to step by assembly instruction instead of by source line by using the toggle button (=" ;

). You can try it if you want, but set it back to stepping-by-source-line mode with the ‘s’ dark (=)
afterwards.

=> Click the stack frame of cread 1line to select it.

Now we can see the context of cread_1line in the various views. The PC arrow and highlighting in the
source and Disassembly views shows the instructions that will be executed when we return to this function.
In the VVariables view can see the buf£ variable which points to the text we’ve typed to the target. The
variables view has a Location column that show us that the variable bus£ is held in register rR5 when
readline_into_buffer iS €Xecuting again but is currently stored in memory (on the stack):

(= Variables 2 % Breakpoints| 0o Registers ?Y Expressions| () Functions ¥ <

=€> Linked: U-Boot =

MName Value Type Count|Size
=+ = Locals 10 variables
@ num @ long unsigned int 32
@ eocl_num 4294367295 long unsigned int 32
© wlen Unavailable leng unsigned int 32
o ichar Unavailable char g
@ insert 1int 32
@ esc_len B int 32
- @ esc_save "y charf8] g8 64
@ init_len Unavailable int 32
@ len BRBBE5EARY unsigned int* 1 32
@ buf "D5-5 is great! " ehar* 1 32
+ = File Statics (current) Mot Loaded

= Right-click the variable bug£. You can see choices in the context menu for formatting the variables
is various ways, for example Float and Hexadecimal. There are also menu items to show the variable in
a Memory, Disassembly or Registers view and to show the variable dereferenced in Memory or
Disassembly views. Dereferencing shows what the variable points to instead of showing the variable
itself. Choose Show Dereference in Memory.

- esc_save Tyyyy T charli] 4 b4 U
@ init_len Unavailable int 32
= @ len BxBBa56487 unsigned int™ 1 32 00
I T e one B
Copy Ctrl+C
+ lc? File Statics (current)
< Select All Cirl+A |
odules| 9= Outline| ¥ Trace Show in Registers =
&, Linked: U-Boot Show Dereference in Memory
Show Dereference in Disassembly

page 11 of 99

The memory that buf£ is pointing to is displayed in a Memory view. Because it’s not possible in C to know
how many bytes buf£ is pointing at, only one byte is shown.

=> Change the Memory view size from sizeof * (buff) t0 16
141 Disassembly | ‘5] Memeory &3 £ Modules| 5= Outline| ¥ Trace =8
v Tn ' 5
Q:{; Linked: U-Boot -
&y & g+ buf 1g|

BxB5645704 Bx44 @x53 @x2D ex35 ex28 exs9 ex73 0s-5 is
BxB564878E Bx2@ @x67 @x72 ex65 ex6l ex74 ex2l great!
BxB@5648712 ax2e ex2e

You can edit the memory either in hex or as characters. Making changes will not have any immediate effect
on what is shown the Serial view, but it will change what U-Boot thinks you have typed when you press
return.

= Click the stack frame of parse_stream to select it.

= Set a breakpoint on line 2959 of hush. c by double-clicking on the line number in the left margin.
5 Debug 2 L5 Project 8 Remote | [v] Streamli =g
| WM K| e PR RS T
W U-Boot connected -
{iif Cortex-A9_0 #1 stopped
pl0lx_getc+(d

serial_getc+0x2C

m

getc+0x28
cread_line+0x28
get_user_input+0x2C
file_get+ B0
parse_stream+0xAQ
b_reset

parse_file_outer+0:xd0 =
[1 3

‘ U-Boot connected

l.c] serial_pl0lx.c Lt hush.c &2 2 =8
5 * & single-quote triggers a bypass of =«
* found. When recursing, quote state

debug_printf("parse_stream, end_trigger
while (({ch=b_getch(input)}!=EOF) {

g m = map[ch];

o #ifdef U BOOT

1 if (input->_ promptme == 8) return

next = (ch == "\n"} ? 8 : b_peek(in
You can see the breakpoint (@) appears in both the source and Disassembly views. The breakpoint is also
listed in the Breakpoints view where it’s possible to set conditions and other fancy stuff that we see later.

)= Variables | ® Breakpoint &3 m Registers | 23" Expressiol

<,}=n|=> Linked: U-Boot -

. @} ® hush,c:2959 [#9 ARM)]

Trace view

= If the Trace view is not already open, open it by choosing the Window > Show view > Trace menu
item.
The Trace view already has some instructions in it, but since U-Boot has just been looping in p101x_getc
it’s not very interesting. Let’s collect some more interesting trace to examine in the Trace view.

= Click the Continue button (/).
The target continues waiting for you to type the rest of the U-Boot command.

page 12 of 99

=> Type the return key into the Serial view.
The target hits the breakpoint in parse_stream.
= Click on the tab of Trace view to bring it to the front.

111 Disassembly | 'F Memory | £ Modules | =] Events 5= Outline | ¥ Trace &3 =0

x O e 144 1< G~8~7
4:9 Linked: U-Boot:Cortex-A9 0 -

Trace | Properties | Ranges

serial_getc l605%, ... -
strlen 1.30% |] | HE
strcpy 1.28%]] K
cread_line 0.47% |] |]
get_user_input 0.30%] m 1
file_get 013% | I
4 T 3
Index Address Opcode | Cycles Detail -
file get + GxBeeBLE30
axasel3eas 1 CMp ra,%a
axaselaeac @ [BNE {pci+exed ; Bx5618198
Bx@5618198 187 LDR r3,[r4,%a]
Bx@5618194 @ MOV r2, %2
Bx@5618198 a STR r2,[r4,%8]
@x@561819C @ CMP r3i,#8
@x@5618140 @ @ BEQ {pcl+Bx88 ; Bx5618228
@x@56181A4 1,848 LDRB re,[r3,#8]
Bx@56181A8 a CMP ra,#a
Bx@56181AC @ ADDNE r3,r3,#l
Bx@5618168 a STRNE r3,[rd,4a8]
@x@5618164 @ <3 POP {rd4-r7,r9-rii,pc}
parse_stream_outer + @xeeoee080
@x@5619648 e CMN ra,#1
Bx@561964C a MoV r5,ré
BxA5619658 @ @ BEQ {pcl+@x154 ; Gx56197ad
Bx@5619654 1495 LDR r2,[rd4,%4]

[Exception: HALTEXCP (1) -

By default, the Trace view collects all instructions executed up to the capacity of thel trace buffer. Because
the target has no external trace port, we’re using an 8KB on-chip embedded trace buffer (ETB). The ETB is
used as a circular buffer and holds a few 10s of thousands of instructions depending on the actual instruction
sequences. If the trace buffer overflows (wraps) then only the most recent instructions will be shown when
the target stops. If you need more control over when trace is collected, you can place trace start and stop
points or trace trigger points, similarly to the way you can place breakpoints.

The Trace view shows a page of trace data at a time. The size of the page is initially 10,000 instructions but
it can be set to any size between 1,000 and 1,000,000 instructions by using the Set Trace Page Size... menu
item in the Trace view’s drop-down menu (*). You can use the buttons to move to the First (1), Previous
("), Next (*") or Last (") page of trace. The First and Last buttons also change the order of the trace
indices.

The Trace view is divided into three panes: Trace, Properties and Ranges:
e The Trace pane shows a history of functions and instructions that were executed in the current
page of trace data. It is divided into two sections: on top is the Navigation section and on the
bottom is the Trace section. These sections can be hidden or displayed using the drop-down

menu (Bi~). You can drag the horizontal divider up and down to resize them.

e The Properties pane shows details of the trace capture and includes a Stop Trace Capture on
Trigger checkbox. You may need to grow the view vertically to see it all.

e The Ranges pane allows you specify address ranges to limit tracing. You may need to grow the
view vertically to see it all.

The Navigation section, at the top of the Trace pane, shows which functions were executed in the current
page of trace data. It shows functions sorted by number of instructions executed and colored timelines of

page 13 of 99

the execution. You can see the transfer of execution between functions:
14} Disassembly | ‘5] Memory | 2 Modules | 5= Outline | 42 Trace i3 =0
% O 4 M4 I G~-8~-7
4:5 Linked: U-Boot: Cortex-A9 0 ~

Trace

Properties | Ranges

pl1x_getc 9556% oo

strlen 154% L |
strepy 1.52% 1§ |
get_user_input 0.30% | | ||
cread_add_to_hist 0.29% || |]

cread_line 018% I

m | »

You can zoom the Navigation section in and out in using the zoom drop-down menu (/" *™)).

= Use the zoom drop-down menu (/™) to change to 1:1 resolution and scroll all to the right end
(most recent).
Now every instruction in the trace is shown individually in the timeline:

141 Disassembly | ‘5 Memory | £ Modules 5= Outline | ¥2 Trace 53 =E
% O I G-8~-7
4::5 Linked: U-Boot:Cortex-A9 0=

Trace | Properties | Ranges
pl0Lx_gete 195.56%| (W] -
strlen 1.54% =
strepy 152% TR =
get_user_input 0.30%

cread_add_to_hist ~ 0.29% | 0|

cread_line 0.18% | =

In order to show more instructions the trace data is not cycle accurate and does not include memory access
addresses or values.

Cortex-A9 trace data (PTM) does not include cycle count information for individual instructions (and by
default, none at all) so the coloring represents the instruction class (memory access, branch, ALU, ...). The
Cortex-A9 trace hardware does not allow tracing memory accesses (addresses or values).

The Trace section, at the bottom of the Trace Doz | o= | fiEie Las= , SEE
. file_get + BxBeBRBE3R
pane, shows the traced functions and BxB56130A8 1 o re, o
instructions in the order they were executed. Dxosesan P - ol et
Bx@5618194 e MoV r2,%2
Bx@5618198 e STR 2,[r4,%#3
The Cycles column shows zero for most ox0261519C o :3,;[5 :
H i ici Bx@56181A8 @ @ BEQ {pc}+8x88 ; Bx5618228
instructions. This is because of the way PTM oxgon e Lot |iofs oirase]
works: it only produces cycle counts on BXB56181A3 8 P ro, 5o
“waypoints” (essentially conditional or Bintis ol |swme 15 ff:f,a]
unpredicted branches) which gives the number Ox25618184 @ & Pop {r4-r7,ro-ril,pc}
. . . parse_stream_outer + exegoee850
of cycles since the previous waypoint. The @xB5619648 @ CMN re,#1
: Bx@561964C @ MOV 5,r@
c_ycle counts are much higher than ex_pected here oxpee19650 > @ BEQ CpersoxiSe ; Gx5E13702
since the caches are disabled and peripherals 085619654 195 __ LDR r2,[rd,#4]

[E] Exception: HALTEXCP (1)

(UART) are being accessed.

On Cortex-A9, conditional branches (and non-PC-relative branches) that are skipped because their
condition codes are not met are shown with @. The PTM trace information does not record whether other
conditional instructions (for example ADDNE) are skipped or not.

The last instruction in the Trace section (index 0) is the last instruction executed before the target stopped
on the breakpoint (which is shown by the rarTExcp. At index -4, we can see that the £ile_get function
returned to parse_stream.

= Click on the Mmov r5,r0 instruction at index -2.
Notice that the corresponding line of source code becomes highlighted in blue the source view. Also a
cross-section marker is shown in the corresponding point in the Navigation pane timeline.

page 14 of 99

= Click and drag up and down in the Trace pane. Notice how both the navigation cross-section marker

and blue highlighting in the source view follow along. You can also move the selection around the

Trace pane with the up- and down-arrow, page-up and -down, home and end keys.

= Click and drag right and left in the Navigation pane. Notice again how both the navigation cross-
section marker and blue highlighting in the Trace pane and source view follow along. You can also

move the cross-section marker around the Navigation pane with the right- and left-arrow keys.

You can use the toggle button ((L ; @) to change from showing both functions and instructions to
showing functions only

=> Double click breakpoint indicator (&%) in the left margin of hush. c to delete the breakpoint. You can
also delete the breakpoint by selecting it in the Breakpoints view and typing the delete key or using the

Delete button

(E.3))

Registers view

When doing bare-metal or kernel debugging via DSTREAM, you can
use the Registers view to access all of the registers of the ARM
processor, including other modes (IRQ, FIQ, ...) and the system
control coprocessor (CP15). For example, you can find out what the
current mode is by expanding the CPSR register in the Core folder
and looking at the M (mode) field. We can see that U-Boot is using
SVC (Supervisor) mode. You could also change the processor mode
using the drop-down menu, but that’s not a good idea.

Watchpoints

A watchpoint stops the target when a particular memory location is
read or written. (Another name for them is “data breakpoints™.)
Before U-Boot starts the kernel it writes the kernel parameters into

RAM at address 0x00000100 as we’ll see later. Let’s place a

watchpoint on that address so that we can find the code that does the

writing.

Name
> LR
PiC

CPSR

@

P ¢ OO O OPODPOTD

S T~ =Moo -

[+]

qo=0mMNZ

m

=

(= IRQ
(= FIQ

9= Variables | ®@ Breakpoin | 1o Registers 23

B, Linked: Snowball ~

Value
BxB56158848

8x85619658
axeaaaaa93

PRI

SVCw

= Bring the Memory view to the front and type 0x00000100 in the Add7ress field.
= Right-click on the first word and choose Toggle Watchpoint from the context menu.

101

ty & g+ 0x0000100

axaaaaalee
axaaaaa114
Bxoepaal2s
axaaaaal3c
exeepaalse
axaaaaaled
Bx2aBeal7s
axwaaaaalac
axaaaaalin
exeepaalba
axaaaaalcs
axeepaalDC
axaaaaalre
BxoeBo0204

Bx736
Bu386

141 Disassembly | 5 Memory 53

Bx287,
Bx616
Bx7 37

BxE22
Bw2E2

BxE46

@363
Bx363
Bx6D6
Bx343
Buda3

4
]
Ho

™

= O— .
= Modules| o= Outline| ¥¢ Trace

<, Linked: U-Boot -

Cut
Copy
Paste
Delete
Select All

Toggle Watchpoint
Toggle Breakpoint
Toggle Hardware Breakpoint

- T e

The Add Watchpoint dialog opens:

S Add Watchpoint

Address:

Access Type:

000000100

[WRITE]

-

@ |

OK

||

Cancel

1024

PuTAEAEAGY _GananTeanIn mwse293130

Ctrl+¥ l414D
Culec [7374
3128
Ctrl+V f746F
I6F63
Delete 2674
Ctl-pn [0553
17367
I6FED
484D
12640
656D
17261

page 15 of 99

axaaieieie
@x32353131
Bx30747869
BxeC7B2428
Bu62887263
Bx696EGETS
Bx6D286D6F
Bx616FECTEB
Bx656D3D36
Bx32333D6D
Bx63284033
Bx685F6D65
Bx696C616D
Bx3D323135

Size|Access
32 R'W
32 R'W
32 R'W

1 RW
1 R/W
1 RW
1 RW
1 R'W
8 R/W
1 R/W
4 R/W
1 RW
1 R'W
1 R'W
1 R/W
1 R/W
5 RW

O

5

m

=> Choose WRITE or ACCESS as the Access Type and click OK.
You can now see the watchpoint in the Memory view and the Breakpoints view.

= Click the Continue button (/¥)).
U-Boot tries to process the command you just typed and prompts for a new one. The watchpoint will trigger
later when it writes the kernel parameters in to RAM.

Functions view
Now we’ll arrange to stop after U-Boot has loaded the linux kernel and is about to transfer control to it in
the function do_bootm_1linux.

= Click on the tab of Functions view to bring it to the front:

9= Variables | ®g Breakpoint | mo Registers ny Expression | f() Functions 2 =08
\)J. =
<;=='(> Linked: U-Boot -
Name a | Start Address a | End Address Compila
@ clock_enable 005608480 0:056084B3 clock.c -
@ get_pll_freq_khz.constprop.0 005608484 0:056084E7 clock.c
@ do_clkinfo 0x056084E8 0:056086C3 clock.c
@ uB500_clock_enable 0x056086C4 0:056086CT clock.c
© db8500_clocks_init 0x056086C8 005608833 clock.c
@ dbB500_clock_cpu_khz 0x05608834 (05608857 clock.c
@ enable_interrupts 005608858 (05608858 interrupts.c
@ disable_interrupts 0x0560885C 0:05608863 interrupts.c
@ bad_mode 0x05608804 0:0560887F interrupts.c

The Functions view shows information about all of the functions in the debug symbols we have loaded

including the start and end addresses. You can change the sorting of _

the Functions view by clicking on the column headings. You can use 7 Sesrehfng = o)
Select function(s) to find

the Filters... command in the view’s drop-down menu (*") to control

which images and compilation units are shown. bootm
. 7 . . bootm_load_os
= Click on the Search button (“*") of the Functions view to open bm:m:stm‘
the Search Functions dialog then type some of the function’s do_bootm
name, select do_bootm linux and click OK: do_bootm_linux

do_bootm_netbsd

The entry for do_bootm_1linux is selected. We can set a hardware

breakpoint on it even while the target is running. @ ok || Concel
= Right-click on the entry for do_bootm 1linux and choose
Toggle Hardware Breakpoint:

(9= Variables | ® Breakpoi | Mo Registers Y Expressio | f() Function E3

G:D Linked: U-Boot ~

MName a | Start Address a| End Address | Con 9= Variables | % Breakpoint | mo Registers By Expression | f() Functions &3 T
@ setup_revision_tag S:0xT7801F14 S:0x77801F5B bootr $
P —— o amanires o ovanaar |
= = = “E, Linked: U-Boot ~
@ flush_cache = Copy Crl+C e S ke o0 -
ble i MName a | Start Address a| End Address Compi
@ enable_interrupts Select All Ctrl+A || @ tspsarporean TURUSOZSALC UNUDDES ST CSpSa_TR
@ disable interrupts Wl - do_bootm_li
I[o bootm_linux | S Copy —
@ show_regs Run to Selection M| @ flush cache
2 :Zdi—:nde Set PC to Selection :: o disk_read Select All CtrleA
= @ disk_writ
@ do_fig Show in Source il = _WTI = .
od - 5 d @ fat_register_device Run to Selection
O_Not_use m -
o do_data_abort v in Memory || @ file fat_detectfs Set PC to Selection
el Show in Disassembly i @ fat_flush_cache
@ do_prefetch_abort rm == .
Show in Source
. . @ readwrite
© do_software_interrupt | ® Toggle Breakpoint m .
. - . @ ftruncate Show in Memory
@ do_undefined_instructi Toggle Hardware Breakpoint m
@ do_reset ™ ToggleT o D k.| @ fsync Show in Disassembly
[€ lrace sia o
@ DhepOptionsProcess 99 tE o close .
@ DhepExtended T8 Toggle Trace Stop Point tp| @ write @ Toggle Breakpoint
© BootpRequest To Toggle Trace Trigger Point te| © read % Toggle Hardware Breakpoint
& DhcpRequest SxTT802ATS S:xTTB0ZATE bootp| @ lseek T Toggle Trace Start Point

Notice that the entry for do_bootm 1inux now shows that there is a hardware breakpoint set (). The
breakpoint is also shown in the Breakpoints view.

There are also Search buttons (¥) in the Variables, Expressions, Registers, Disassembly and Memory
views.

page 16 of 99

= Type the command boot followed by the return key into the Serial view to tell U-Boot to load and
boot the Linux kernel.

The target will stop at the beginning of do_bootm_linux. If you didn’t delete the breakpoint in
parse_outer, the target will stop there first and you should press the Continue button to get to

do_bootm linux. By the time U-Boot gets t0 do_bootm linux it will have already loaded the kernel into
RAM at some physical address and written some details to the console. All addresses are physical because
U-Boot hasn’t turned on the MMU.

Line 142 of of bootm. c is where U-Boot transfers control to the kernel.

= Click on line 142 to move the selection there; then right-click on the line and choose Run to
Selection from the context menu. Be sure to move the selection to line 142 first.

We don’t reach, line 142 though. It turns out that our watchpoint triggers first in the function
setup_start_tag (Which has been inlined into do_bootm 1inux) and it constructing the kernel parameters.
The temporary breakpoint on line 142 that was created by Run To Selection is still present (and can be seen

in the Breakpoints view. Get information about a breakpoint by hovering the cursor over it.)
7| ¥ 000000100 WRITE @ 0,00000100 [#12]
V| % bootm.c:do_bootm_linux() @ 05623C38 [#13 HW, 1 hit]
J| % bootm.c142 @ do_bootm_linux+0x21C 0:05623E54 [£14 ARM]

Source Level Software Breakpoint [ARM] #14
bootm.c142

Image: u-boot

Location: do_bootm_linusx+0:21 C 0x05623E54
State: Active

Temporary Breakpoint - Will be deleted when hit

= Click the Continue button (¥) and the target will reach line 142.

From the source code we can see that U-Boot is going to pass three parameters to the kernel: zero (in ro),
the machine ID, machid, (in r1) and a pointer to the kernel parameters, bd->bi_boot_params (in R2). You
can see the value of machid by hovering the mouse over it. You can also see the value of the variables in
the Variables view. The last parameter is a pointer to the kernel parameters in memory which contains the
kernel command line (bootargs) and other information.

= Select bd->bi_boot_params in the source then right-click on it and choose Show Dereference in

Memory:
193 Disassembly | “H Memory 22 = Modules| OF Outline| ¥ Trace f+ * Xn ' ¢ ¥ =8
Q:f; Linked: U-Boot ~
ﬁﬁ fofn] |'§,.| + 0:00000100 2048
Bx@aaa836C Bx64646164 Bx2F287D72 Bx616D4975 Bx63886567 @x6FEDEDEF daddr} fulmage. commo -

axeepaa388 @x6772616E @x63733D73 Bx7eBEE3V4 @xeFeFe228 @xe77261l74 nargs=setenv bootarg
Bxeaeaa394 Bx6FB32873 @x6C6F736E @x7B243D65 @x736E6FE3 @x7D65S6CEF s console=%{conscle}

axeaeaadAs Bx61607628 @x636F6C6C @x3635323D0 @x6D65884D @x7261636D vmalloc=256M . emmcar
exeepaa3BC @x733D7367 ex6E657465 BxB@2863BC @xeed4CE3BD ex24287383 gs=seten. cd L..s %
xeaaaadDe BuBEaaaeed Bx54418802 Bxd ax ax 2B AT (i +

exeepaa3E4 @x54418889 ex736E6Fe3 ex3De5eCeF @x4l797474 @x2032414D ««ATconsole=ttyaMAZ,

Bxeaeaa3Fs @Bx32353131 @x336E3838 ex616D7628 @x636F6CE6C @x3635323D 11528@n8 wmalloc=256
axeeeaadec @xeF72204D @x2F3D746F Bx2F7e6364 @x62636DeD ex7eiecbeC M root=/dev/mmchlkap
Bxeaeaal28 BxBF722833 ex6l77746F @x6D287468 @x313D6D6E5 @x484D3832 3 roctwait mem=128M@
axeaeaa434 Bx61602838 A@x6D2EG96C @x5FE96C61 @x3DED656D eax484D3233 8 mali.mali_mem=32M@ s

In the Memory view (you may need to scroll down) we can see the kernel command line string in the
middle of the kernel parameters preceded by the tag value 0x54410009: console=ttyAMA2,115200n8
vmalloc=256M root=/dev/mmcblk0Op3 rootwait.

= Click on the tab of the Disassembly view to bring it to the front.
If you scroll the Disassembly view up a few lines you can see that the function setup_end tag has been
inlined into do_bootm_linux. This is indicated by the lable setup_end_tag +0x10 [inlined] and the
green color of the addresses. Now we’re going to step carefully by assembly instructions.

= Click the stepping by toggle button in the Debug Control view so that it is in stepping-by-

. . . : =
instructions mode with the ‘i’ dark ().

page 17 of 99

= Click the Step (into) button (\=*-: F5) three times until the PC arrow is on the BLx R3 instruction that
transfers execution to the kernel:
i1 Disassembly 2 iH Memory| = Modules 0= QOutline| ¥ Trace
<§} Linked: U-Boot ~
ty - g ~ <MNext Instruction> 100

Address Opcode Disassembly
setup_end_tag + 9x8 [inlined]

BxB5627664 5TR r5,[r3,%#4]
Bxa5627688 5TR rs,[r3,#8]
do_bootm_linux + @x28@
BwB562766C BL printf ; @x5615F58
BxB5627608 BL udc_disconnect ; @x5638698
BxB56276C4 BL cleanup_before_linux ; @x562697C
@xa56276C8 MOV ré,rs
BxB56276CC LDR ri,[sp,#8]
@xa5627608 LDR r2,[r4,48x1a]
BxB5627604 LDR r3,[sp,#exc]
& | @x@56276D8 BLX r3
BxB56276DC B do_bootm_linux+56 ; BxS6274F4
BxB56276E8 MOV rd,ra
setup_boottime_tags + @x18@ [inlined]
@x@56276E4 LDR r2,[ria,#a]
BxB56276EB UXTEB ri,rs
BxB56276EC B Ipcl-@xe8 ; Bx5627684

= Click on the tab of the Registers view to bring it to the front.
See that ro contains zero, r1 contains the machine ID and r2 is a pointer to the kernel parameters and r3 is a
pointer to the kernel code (as a physical address). Although the compiler doesn’t know it, the kernel will
never return t0 do_bootm_linux.

= Click the Step (into) button (/=" ; F5) one more time to step to the kernel:

14 Disassembly &3 ‘H Memery| = Modules 5= Outline| ¥ Trace

4;5 Linked: U-Boot

ELE
Address Opcode Disassembly

o @x0e083000 MOV ré,ré
expeaeseed MOV rd,ré
Bxoaaa3ees MOV rd,ré
Bxaaaasaac MOV ré,ré
exoaaesele MOV rd,ré
exoaaesals MOV rd,ré
Bxaaaasals MOV ré,ré
Bxeaaasalc MOV rd,ré
expaaese2e B +32816 ; @x383e
Bxbaaase24 CLZEQ r2,rg ; ?
Bxaee3828 ANDEQ ré,rd,ré
Bxoaaase2c SUBEQ ré,r7,ré,AsR #24
Bxaaaasa5e MOV r7,ri
Bxpaae3854 MOV ré,r2
BxBEea3858 MRS r2,APSR ; formerly CPSR
BxaaaasasCc 5T r2,#3

The kernel image that U-Boot loads into RAM is known as uimage. It has a 64 byte header created by the
U-Boot tool mkimage and is followed by a compressed version of the kernel wrapped by a self-decompressor
which is the code we see here and is known as a zimage. The zImage Works by decompressing the kernel
code in-place and then jumping back to the beginning again. We’ll set a hardware breakpoint on the first
instruction and continue the target to let the decompression happen.

= Click the Step (into) button (/=*-: F5) once to step to the next instruction.

= Right-click on the first instruction of the compressed kernel (0x00008000) and choose Toggle
Hardware Breakpoint. Using a regular software breakpoint won’t work since the decompressor is
going to overwrite this instruction.

= Click the Continue button (¥)).

page 18 of 99

The target stops on the first instruction and shows the decompressed kernel code:
18! Disassembly &1 - ‘H Memory| £ Modules| 5= Qutline| ¥ Trace
<~:==(> Linked: U-Boot -
B B~ s

Address Opcode Disassembly

i G:x36605060 M5R CPSR_c,#8xd3
PxBEEASRE4 MRC p15,50%8,r9, cd,cl, %@
BxaaeasRas BL +6358232 ; Bu6BES98
axeaeespaC MOVS rig,rs
axeaepsele BEQ +635838@ ; Bxeec3DC
ax@apasels ADR r3,{pcHex3s ; oxBodc
Bxaaeasnls LD#M r3,{r4,r8}

Since we’re done debugging U-Boot we will delete any breakpoints and watchpoints we still have and
unload its debug symbols.

= Click the Delete All button (%) in the Breakpoints view.
= Click the stepping by toggle button in the Debug Control view so that it is back in stepping-by-

=
source-line mode with the ‘s’ dark ('5")).
= Close the various U-Boot source views, if you want to get them out of your way.

Now we’re ready to start debugging the kernel.

page 19 of 99

Kernel and module debug
When U-Boot transfers execution to the kernel the MMU is

still off and all addresses are physical addresses.

Building the MMU tables and turning on the MMU are some of the first things that the kernel does, but it
can still be useful to debug the kernel before the MMU is on.

Setting up your own target: Download the Linux kernel symbols and sources

If you are running this workshop on your own host you will

need to do some setup to debug the Linux

kernel. You can download the kernel sources and symbols using the Ubuntu package manager on the target
and then build the kernel module example on the target. Once built, the sources and symbols can be copied
to your host and used during the debug session. To complete your own setup please follow the instructions
in the appendix Linux kernel download and debug setup in the appendix on page 95; and Kernel module

debug (modex) build and setup in the appendix on page 97.

Debugging the kernel before the MMU is on

There is no requirement to debug the kernel before the MMU is on unless you’re trying to find a bug there
or are an exceptionally curious person. I’m guessing you’re exceptionally curious so we’ll debug it just a
bit. Similarly, if we wanted to get to this point without bothering to debug U-Boot first we could just set a
hardware breakpoint at 0x00008000 and let U-Boot run until we reached it twice (“twice” because of the

decompression).

9= Variabl | % Breakp |10 Regist &2 . %Y Expres | f0) Funeti| = O
7=
= Bring the Registers view to the front; expand the CP15 and T
System folders and the CP15_SCTRL (System Control) 5 & Core -
register. T o o Syt
+ @ CP15_MIDR @x412FC@I1 32 RO e
You can see that that CP15_SCTRL register has the M bit clear Them Cimaled= 1R
(“Disabled”) so the MMU is currently disabled. S ST
@ NMF Disabled* 1RO
o EE e 1RW
Debugging the kernel before it turns on the MMU is very similar to S - fgﬂ
debugging U-Boot, but because the kernel debug symbols in the ol “enabledv 1RW
vmlinux file are the virtual addresses we need to load them with an - M I
offset so that they are valid with the MMU off: The virtual address s Sl s L
of the first instruction is 0xc0008000 and the physical address is ~oM Disabled~ 1R
$pc S0 the offset needed is $pc-0xCc0008000 (Or 0x00008000- - e
0xc0008000 if the PC is somewhere else).
= Choose Load... from the Debug Control view’s Load File = [&)=
drop-down menu (*") and then choose Load Debug Load Type |Load DebugInfo -

Info; click the Workspace... button then select
kernel\vmlinux-3.3.0-1000-

ux500.debug_only, Which has the kernel debug
symbols; put $pc-0xc0008000 in the Load Offset
field. If you’ve stopped the target at a different
location than the first instruction of the kernel you’ll
need to use 0x00008000 instead of $pc. Click the
OK button:

Loads the debug information from an image into the debugger. Subsequent
use of the file command discards existing infermation before loading the
new debug information. If you want to append debug information instead
of replacing it, you can use the add-symbol-file command.

wwmlinu-3.3.0-1000-wS00.debug_only - = I File System... : ;;‘-"orkspace:;

Load Offset 5pc-0xC0008000

/| Enable on-demand loading

':?,:‘ [QK l | Cancel |

The Disassembly and source views update to show the kernel symbols and sources. Most of the early

kernel source is written in assembly code.

Because we chose Load Debug Info the U-Boot debug symbols that we had loaded before were discarded.

The command that appears in the Commands view is file
copy that command to a script if we needed to do it often.

page 20 of 99

instead of add-symbol-file. We could easily

You may need to set a substitute path if the source code for the kernel is not resolved. For example you
should see
1€l hush.c Lg| serial_pl0lx.c L€ bootm.c »‘Zfﬁf head.S &% i =B

Source Not Found

The Source File /build/buildd/linux-w500-3.3.0/arch/arm/kernel/head.5 was not found. I this source
is available you can view it by configuring a path substitution.

Set Path Substitution

= Click the Set Path Substitution button in the source view
= Select the Image Path as /build/buildd/linux-ux500-3.3.0/

= Use the Workspace... button to select the Host Path as $ {workspace loc}\kernel\igloo-
kernel\ by choosing the igloo-kernel directory

&% Path Substitution

Sol
& Edit Substitute Path o &[5
!
Select the Image Path and Host Substitute Path
The image path will be replaced with the provided host path when
searching for source files on the local host.
T Image Path
Iy Jbuild/buildd/linu-ws00-3.3.0/ Select... | loo-kernel\,
Haost Path
Hworkspace_lochkerneligloo-kernelh | File System... : [Workspace...l
| oK | | Cancel |

You can now step and do the normal debugging things to see what the kernel is doing before the MMU gets
turned on. We’ll just set a breakpoint on the function __turn_mmu_on Which is where the kernel, well, turns
the MMU on. In the Functions view, the address of __ turn_mmu_on should be 0x00625430 If the value is
different then you may have mistyped the Load Offset. Another reason that the value could be different is
if you’re using a different version or configuration of the kernel. If the address is not 0x00625430 then
execute the command £ile in the Commands view to discard the debug symbols and then reload them.

= Use the Functions view to put a hardware breakpoint on __ turn_mmu_on or, for variety, use the

command hbreak __ turn_mmu_on in the Commands view.

= Click the Continue button to run to it ({#).
When we get t0 __turn_mmu_on the MMU is still off, but register r13 has the virtual address of the first
instruction executed after the MMU is turned on (usually it holds the stack pointer). If you want, you can
look in the Trace view to see what has been executing recently. You may notice that the symbol displayed
in the Dissassembly view is not __turn_mmu_on. The reason is that at this location there are two symbols,
and the debugger is displaying the first (from line 450).
[If, instead of reaching __turn_mmu_on, the debugger stops with the pc near address oxrFFrFF0000 (that is, in
the exception vectors) then the breakpoint has been missed and the kernel has started executing and the
debugger has stopped the target on a Data Abort or other exception. The Serial view will show the kernel
message output. You’ll need to disconnect, reset the target, stop U-Boot from launching the kernel by
typing to it and reconnect the U-Boot debug configuration.]
= Delete the breakpoint that is on __ turn_mmu_on because when the MMU is turned on it will be in the
wrong place and will only be able to cause problems.
= Place a temporary hardware breakpoint at the address that r13 is pointing at, by typing the command
thbreak *$r13 inthe Command field of the Commands view and pressing return. (Actually the * is
optional.)

page 21 of 99

#% Debug Control £3 L Project Explorer = O | @ Comman i -] History % Scripts Jjﬁ Remote =08

SIS AR SR N =] g B EBED-% "
W U-Boot connected { CALAO Systems - Snowball) ‘5, Linked: U-Boot ~
ﬁ cOrtex_Ag_o #1 stqpped a0 hreakpqint #14 ::EE\\'EI"E DFEaKpoInT 13 8T uoXuogucooy ~
= 0x00625430 continue
Execution stopped at breakpoint 13: @x@eseseee -
4 n 3
4 I 3
W U-Boot connected Command: thbreak 5r13 Submit
\.€] hush.c l| serial_pl0lx.c |€] bootm.c |8 head.s 2 >y = O |14} Disassembly 3 ‘H Memory| £ Medules 5= Outline| ¥ T
445 % prI3 = *virtual® address to jump to upon completion -
65 *
446 r _- -
447 * other registers depend on the function called upon completion] @ E v <Nedtlnstructions
448 */ Address Opcode Disassernbly
—:f?' .align 5. . BxBB625428 BL mutex_lock ; @x622A63
8 -pushsection .idmap.text, "ax BxBB62542C LDM sp,{ril,sp,pc}
ENTRY(__turn_mmu_on} __idmap_text start
’ '!'0\" ré, ré oy @xBe625430 MoV ré,ré
4 instr_sync . Bx@B625434 IsB
454 mcr pis, @, ré, cl, c@, @ @ write control reg BxBB525438 MCR p15,%0x%8,r8,c1,c,%0
455 mre pl5, 0, r3, c@, <@, @ @ read id reg BxBB62543C MRC p15,#0x8,r3,cd,ca,#0
456 1nstr‘:syns BxB8625440 IsB

= Click the Continue button (/).
When the target stops the MMU is on but the symbols we loaded with an offset are now wrong. The
breakpoint gets deleted when it is hit because it’s a temporary breakpoint. You can see that the M bit in
CP15_SCTRL in the Registers view is now set (“Enabled”).

Lead File o ===
=> Reload the kernel symbols without an offset. ——
Choose Load... from the Debug Control view’s oac Type (kae Dehug nie 7
— Loads the debug information frem an image into the debugger. Subsequent
dl’Op-dOWﬂ menu () and then Choose Load use of the file command discards existing information before loading the

. H new debug information. If you want to append debug information instead
DEbUg Info; click the WorkSpaCG--- button then of replacing it, you can use the add-symbol-file command.
select kernel\vmlinux-3.3.0-1000-
ux500.debug_only, Which has the kernel debug

wmlinue-3.3.0-1000-500.debug_only ~ [File System...| | Workspace...|

symbols; don’t put any value in the Load Offset Load Offset
f|e|d and then CIiCk the OK button. /| Enable on-demand loading
'f?:' [OK l | Cancel |

= Use the Functions view to put a breakpoint on start_kernel or, for variety, use the command
break start kernel on in the Commands view.

= Click the Continue button (| ¥)).

The start_kernel function initialises the remainder of the Linux kernel after the MMU is turned on. The
majority of the kernel components are initialised in this function. As the memory map for the Linux kernel is
now initialised we can enable the DS-5 Linux kernel operating support to aid our debug session.

Debugging the kernel initialisation after the MMU is on

So far we’ve been debugging using the U-Boot bare-metal debug configuration that we created. This works
for the early kernel because the kernel itself is essentially a bare-metal application; that is, the kernel does
not rely on any lower-level operating system.

Now it’s time to examine or create a debug configuration for the kernel when the MMU is on.

=> With the target still stopped, click the Disconnect From Target button (K) in the Debugger
Control view to disconnect the U-Boot debug configuration.
=> Choose Run > Debug Configurations... then expand DS-5 Debugger.
The Kernel debug connection may already have been created for you in which case you can just select it,
examine the settings and choose the DSTREAM unit.

page 22 of 99

= If there is no Kernel debug connection as a child of DS-5 Debugger, then select DS-5 Debugger and

click the New launch configuration button (') to create a new debug configuration. (You can also
double-click DS-5 Debugger or right-click it and choose New instead.)
=> Give the debug configuration a name, | used Kernel.
In the Connection pane of the debug configuration we need to specify the platform and choose the
DSTREAM.
=> Type sno in the Filter platforms filter box so that the only the matching platforms are shown.
= Expand CALAO Systems > Snowball > Linux Kernel and/or Device Driver Debug in the
platforms list.
= Select Debug Cortex-A9 0 via DSTREAM/RVI.
We choose kernel-only trace because decoding the trace information requires reading the instructions from
the target which is not always possible for a Linux application that isn’t the current process.

= Click the Browse button and choose the DSTREAM unit and click OK. Your Connection number
will be different than shown.

MName: Kernel

== Connection . |[z7} Files B Debugger| (9= Arguments | B, Environment | EJ Event Viewer

Select target

Select the manufacturer, board, project type and debug operation to use. Currently selected: Calao_Systems - Snowhball

sno

4 CALAQ Systems
4 Snowball

. Bare Metal Debug

. Linux Application Debug

4 Linux Kernel and/or Device Driver Debug
Debug Cortex-A9 0 via DSTREAM/RVI
Debug Cortex-AS_1 via DSTREAM/RVI
Debug Cortex-49x2 SMP via DSTREAM/RVI

DT5L Options | Edit... Configure trace or other target options. Using "default” configuration options
D5-5 Debugger will connect to a DSTREAM or RV te debug a bare metal application.

Connections

Linux Kernel Debug | Connection USE:000227 | Browse... |

We’ll leave the Files pane of the debug configuration blank so that we can be sure that the target is stopped
when we load the debug symbols. We’ll load them in a script in the Debugger pane. The kernel was (and

can only be) built on a Linux host. As we are using a Ubuntu image we can use the Linux package manager
to get the symbols for the Linux kernel.

In the Debugger pane of the debug configuration:
=> Choose Connect only so that DS-5 will just attach to the target which is already running the kernel.

=> Check Execute debugger commands and type these commands into the field:
interrupt
add-symbol-file "kernel\vmlinux-3.3.0-1000-ux500.debug_only"

page 23 of 99

= In the Paths list select Source search directory as $ {workspace_loc:/kernel/igloo-kernel} by
clicking on the Workspace... button and choosing the igloo-kernel directory:

-4e- Connection [[[g) Files | £5 Debugger .)= Arguments| B§ Environment | B3 Event Viewer

Run control -

Debug from entry point Debug from symbaol | main

Run target initialization debugger script (.ds / .py)

Run debug initialization debugger script (.ds / .py)

| BExecute debugger commands

interrupt
add-symbol-file "kernelvmlinue-3.3.0-1000- w00 . debug_onky™

m

Host working directory
| Use default

S{workspace_loc} File System Workspace

Paths

|Sc-urce search directory =

El S{workspace_loc/kernel/igloo-kernel}

=

| File System... I | Workspace.. I

The Arguments and Environment panes don’t apply to kernel debugging either, so just leave them blank.
And again, we won’t be using the Event Viewer pane, so just leave it blank, too.

= Click the Debug button. If the Debug button is disabled then Eclipse will put a message explaining
why at the top of the Debug Configurations dialog.

When the debugger connects, we can now see that we are stopped at start kernel:
[thread_info.h |.¢| main.c &3 P29 = B[Disassembly &2 ‘B Memeory| = Modules EE Qutline | ¥£ Trace
pgtable cache_init(); -
vmalloc init();

tir g~ <MextInstruction>

Address Opcode Disassemnbly

asmlinkage wvoid __init start_kernel(woid) start kernel

ot BxCBEF 3608 MOV riz,sp
char * command, line; BxCREF368C PUSH {r4-ré6,ril,ri2,lr,pc}
extern const struct kernel param start, paran exCA3F36108 SUB rii,riz,#4
BxCBEF3614 SUB sp,sp,#8xl4

current_thread_info [inlined]

This kernel debug configuration will behave in a similar way to the bare-metal debug configuration that we
have been using so far but will also allow us to see the processes and threads after we’ve loaded the kernel
debug symbols. Another difference is that, by default, when doing bare metal debug DS-5 intercepts
processor exceptions like Data Abort and in kernel debug it lets the target handle them. The interception
behaviour can be changed by using the Manage Signals command in the Breakpoints view’s drop-down
menu ().

The extra orange underlining in the kernel source views is due to the C/C++ indexer not fully understanding
the include paths and macros used to build the kernel. You can disable it in Window > Preferences >
General > Annotations > C/C++ Indexer Markers.

There are no processes yet, but we can step and debug the rest of the kernel with the MMU on. In the

Breakpoints view, you can also see that DS-5 has set some debugger internal breakpoints so that it can
track the loading and unloading of kernel modules. Next let’s debug some of the kernel initialisation.

page 24 of 99

=> Double click on side bar next to line 495 in main. c to set a breakpoint

= Click the Continue button (/).
head.5 head-common.s |.c] main.c 23

tick init();
boot cpu initi);
page address_init();
printk(KERN MOTICE "¥s", linux banner);
setup_arch({&command, line);
496 mm_init owner(&init mm, 8&init task);
497 mm_init cpumask(&init_mm):
498 setup command_ line({command line);

On line 494 a kernel printk function was executed. These kernel messages are normally directed to the
serial port to aid with the debug of kernel start-up. As we are still at a very early stage in the kernel boot
process the serial port driver for the kernel is not initialised yet. For that reason the message is not displayed
over the serial port connection yet.

You can use the info command to get information about the kernel even if the target doesn’t have a serial
console. You can use Content Assist (Ctrl+Space) to get help on commands as you are typing them.

INFO: In Windows, if foreign language support is enabled, the Ctrl+Space key combination is used to
change between languages inside a text box (for example English to Chinese). You can change the key
combination to something else in Eclipse by going to Window > Preferences > General > Keys > Content
Assist to change the key combination to something else.

= Type info into the Command field of the Commands view and then type Ctrl+Space. This
activates the Content Assist which shows the possible completions and help for each. You can use the
mouse and arrow keys to choose which alternative you want:

Command: info |SubmitJ
info » {linfo os-log
info address This command displays the contents of the operatingsystem (05) log buffer for .
info all-registers connections that support this feature. On Linux this is the contents of the
info b kernel dmesg log.

info breakpoints

info capabilities | = pobes

A Linux kernel cennectien must be established and the target is stopped before

|

info classes you can use this command.

info cores

info f syntax

info files info os-log £
info frame

info functions Example

info handle LD @I

info inst-sets info os-log # pisplays the 05 log buffer

info locals

info mem See also

info members
info memo * info os-modules

- * info os-version
m ~ * info processes il
= Try the info os-version and info os-log cOmmands. The info os-log command shows the
kernel message buffer. (printk; dmesg);

= Click the Continue button (¥) and let the target run.

One of the next initialisation sequences of the Linux kernel is to boot the secondary processors and assign
kernel threads to the cores. We will disconnect and then reconnect DS-5 with an SMP connection:

. . we | . . .
= Click the Disconnect From Target button (2. in the Debug Control view to disconnect from the
running target.

= Right-click on the Kernel debug configuration in the Debug Control view and choose Debug
Configurations... to edit the configuration.

= Type sno in the Filter platforms filter box so that the only the matching platforms are shown.

page 25 of 99

= Change from Debug Cortex-A9 0 via DSTREAM/RVI to Debug Cortex-A9x2 SMP via
DSTREAM/RVI.

-4e- Connection [Files| &% Debugger | (4= Arguments | g Environment | 3 Event Viewer

Select target

Select the manufacturer, board, project type and debug operation to use. Currently selected: Calao_Systems - Snowball

sno

4 CALAQ Systemns
4 Snowball

. Bare Metal Debug

- Linux Application Debug

4 Linux Kernel and/or Device Driver Debug
Debug Cortex-A9_0 via DSTREAM/RVI
Debug Cortex-A9 1 wia DSTREAM/RVI
Debug Cortex-A%x2 SMP via DSTREAM/RVI

DTSL Options | Edit... | Configure trace or other target options. Using "default” configuration options

DS-5 Debugger will connect to a DSTREAM or RV to debug a bare metal application.

Connections

Linux Kernel Debug | Connection USB:000227 Browse...

We will setup the tracing options in a DTSL configuration.

= Click the DTSL Options Edit... button to open the DTSL Configuration Editor dialog box.
= Click the Add button (+) to create a new DTSL configuration.

= Give the new DTSL configuration a name, | used trace-

both Mame of configuration: trace-both
= In the Trace Buffer pane, change the Trace capture Trace Buffer . Cortex-A3 | System
methOd to On Ch'p Trace BUffer (ETB) The SnOWba” Trace capture method I__On Chip Trace Buffer (ETE)

doesn’t have a connector for external (TPIU) trace

= In the Cortex-A9 pane, check Enable Cortex-A9 core trace and Cycle Accurate so that the trace
data will include cycle count (although this will mean that fewer instructions fit into the ETB).

=> Check Trace capture range and set the range to 0xBF000000-0xFFFFFFFF Which is the address

range of the kernel and kernel modules.
Trace Buffer | Cortex-A9 - System

#| Enable Cortex-A9 core trace

| Enable Cortex-A9 0 trace

V| Enable Cortex-A9 1 trace
PTM Triggers halt execution

| Enable PTM Context IDs

Context ID Size 32 bit

V| Cycle Accurate

| Trace capture range

Start address OxBFO00000
End address (xFFFFFFFF

= Click OK in the DTSL Configuration Editor dialog box.

= Click the Debug button to reconnect to both processors on the target.
In the Debug Control view we can now also see the processes and threads instead of just the cores that we
saw when debugging the bare-metal U-Boot.

=> Expand the All Threads folder in the Debug Control view to see all the processes and threads:

page 26 of 99

74 Debug Control &3 [Project Explorer| 45 Remote Systems =0
S| K| R P IRRRT T
4 W& Kernel connected (CALAO Systems - Snowball) -
4 [~ Active Threads
4 % swapper/0 #2 stopped (PID 0 was running)
ik Cortex-A9_0 #0 stopped
a = Call Stack
= cpu_v7_do_idle+0x8
4 % swapper/1 £3 stopped (PID 0 was running
ﬁ Cortex-A8_1 #1 stopped

4 (= All Thread
- K& swapper/0 #2 stopped (PID 0 was running)
. %@ swapper/l #3 stopped (PID 0 was running
. K% kthreadd #4 (PID 2
. & ksoftirqd/0 £5 (PID 3
. K& lworker/0:0 26 (PID 4 i

You can expand each thread to see the thread’s stack. You can change the debugger’s focus from one thread
to another by clicking on the different threads and stack frames. You can change the way child threads are
displayed by choosing Flat or Hierarchical from the Thread Presentation submenu of the Debug Control

view’s drop-down menu (). From the drop-down menu you can also select Always Show Cores to
display the cores (ﬁ) like in bare-metal debugging as well.

Kernel space threads are shown with a () icon and user space threads are shown with a (%) icon.

Reading the thread information for all threads takes some time, so it's a good idea to leave the All Threads
folder collapsed when you don’t need it.
= Collapse the All Threads folder to hide the non-active threads.

= Click the Continue button (\¥) to let the target run so that the kernel can finish booting.

For the next part of the workshop you will need to build the DS-5 kernel module example against the kernel
on your target and copy it back to the host. If this has not been done for you, please see in the appendix on
page 97 about how to set this up.

When the kernel finished booting it will prompt you to login.
= Type 1s to the Serial view window to list the files in the current directory.
The file modex . ko is a kernel module that we can debug. Kernel modules are like shared libraries for the
kernel. First, we will load its debug symbols:
=> Choose Load... from the Debug Control view’s drop-down menu (*); leave Add Symbol File
selected,; click the Workspace... button and then choose kernel module\modex .ko, Which has debug
symbols; click the Open button and then click the OK button.
We use Add Symbols File instead of Load Debug Info, because Load Debug Info would discard the
currently load debug symbols (from vm1linux). There will be a warning in the Commands view that
modex . ko is not loaded yet. That’s ok, we will load it soon.
= Look in the Modules view.
We can see that modex is not in the list.
= Type insmod /home/linaro/kernel module/modex.ko t0 the Serial view to load (insert) the
module.
There will be a message in the Commands view that the symbols have been loaded and modex now appears
in the Modules view.

1§} Disassembly |5 Memory | S Modules 2 B= Qutline| ¥ Trace
<~===(> Linked: Kernel =
Mame Symbols Address Type
|54 modex loaded BxBF@36080 kernel module Ci/Users/
| g_multi nosymbels @xBF@lsee@ kernel module
|# gater no symbels @xBFeeaeae kernel module

page 27 of 99

= Click the Interrupt button (') to stop the target.
= Use the Commands view to set a breakpoint by executing the command break modex write.

= Click the Continue button (¥) and let the target run.
= Type echo A > /dev/modex t0 the Serial view. The a can be any character you want.
The kernel will call the modex_write function which will process the input after hitting the breakpoint. You
can now step and debug the kernel module.
= Click on line 84, with the call to printk, to move the selection there; then right-click on the line and
choose Run to Selection from the context menu. Be sure to move the selection to line 84 first.
= Look in the Variables view to see that the value of x holds the first character that you echoed.

= Click the Step Over button ('=*/; F6) to execute the call to printk.

= See that the printk message appears in the kernel messages, type info os-log in the Commands
view. If the kernel messages are still being directed to the serial port then they will also appear in the
Serial view.

=> When you’re finished with your investigations, delete any breakpoints and then click the Continue
button (/) and let the target run.

. e |, .
=> With the target still running, click the Disconnect From Target button (") in the Debugger
Control view to disconnect the Kernel debug configuration.

Peripheral Registers

The debugger can also display memory-mapped peripheral registers in the Registers view. DS-5 knows the
peripheral registers for some platforms, but not for Snowball. If the peripheral register descriptions are
available in a standard format (CMSIS-SVD, RVD BCD or Lauterbach PER) DS-5 can import/convert them
to its format (. tc£) and use them. There are a collection of CMSIS-SVD files at http:://cmsis.arm.com. We
don’t have a file to import for Snowball, so will use DS-5’s Target Configuration Editor to create a . tcf
file with a few peripheral registers to show what kinds of things are possible.

Create a new file myregs. tcf in the kernel project.
= Select File > New > Other... (Ctrl+N), expand Target Configuration Editor and select Target
Configuration File; click Next >.
= Select the xernel project; type the filename myregs. If we wanted to be able to reuse the registers in
multiple targets we could choose to create a Peripheral library file (.pc£) instead of a Device file
(.tcf), but that’s slightly more work for a single target so we’ll just use the default, Device.

A New — @ =~ New Target Configuration File =] @
Select a wizard Target Configuration File
Create a target configuration file Create a new target configuration file resource, TCF
Wizards: Enter or select the parent folder:
type filter text kernel
+ = General =
» = CC++ =% distribution
=g =5 gnometris
» [D5-5 Debugger 1= kernel
= Java =% kernel_module
» = PyDev =2 u-boot-w500
» [= Remote System Explorer 5 xaos
» [== Scatter File Editor
4 [= Target Configuration Editor File name: .myregs
= Target Configuration File .
Target type options
@ Device Peripheral library
. - . ————
@ < Bac | Next» J Cancel '/?I < Back Mext > | Finish [[Cancel |

= Click Finish. The file is created and the Target Configuration Editor opens to the Overview pane.

page 28 of 99

=> Double click the myregs.tcf tab to zoom up the editor to fill the whole Eclipse window.

= Fill in MyDevice for the Unique Name for the device (must be a legal C identifier) and type any

descriptive text you want in the Description and Datasheet fields:

) "myregs.tef E3 =5

Overview E -

This tab shows a high-level summary of the target. Use the links to navigate to other tabs. Mandatory fields are indicated by an asterisk.

General Information Memory Blocks

Create or modify the systern memory map in the Memory tab. You can edit

*Unique Mame: MyDevice " Y €
your data in the Graphic tab or in the Table tab.

Category:
gery Default This board contains 0 memory blocks.
Inherits: -
) Peripherals
Endianness: @ Little Endian Big Endian))
Create or modify peripherals in the Peripheral tab. You can edit peripheral
TrustZone: Supported @ Unsupported data in the Graphic tab or in the Table tab.
Power Domain: Supported @ Unsupported This board contains 0 peripheral blocks.
Description Registers and Bitfields
Thisis a description of the current target, Create or modify registers and bitfields data in the Registers tab, You can

5 define bitfield data in the Bitfield table.
A few example registers for Snowball.
This board contains 0 registers,

Enumerations

Create or modify Enumeration values for registers and bitfields,

Datasheet

a. s e Enumeration definiticns can be shared and reused by different registers and
This is the referenced datasheet, bitfields.

hittp:/fwww.stericsson.com/developers/DMO00030004_ - This board contains 0 enumerations.

API500_reference_manual_revl.pdf
- Configurations

Use the Configurations tab to enter configuration data.

» Import Peripheral This board contains no configuration data.

b Includes Qutline

You can also use the Outline view to navigate.

Owerview | Memory | Peripherals | Registers | Group View | Enumerations | Configurations

The Target Configuration Editor has a number of panes which are used to describe various aspects of the
target: Memory, Peripherals, Register, Enumerations, Group View and Configurations. They are
described on the right side of the Overview pane along with links. There are also tabs along the bottom of
the view for switching panes. You can also navigate a . te£ file using the standard Eclipse Outline view.

We don’t need to create any memory regions so we’ll skip the Memory pane. We’ll start by creating a
peripheral, the RTC (real time clock).
= Click on the Peripherals tab or link to view the Peripherals pane.
= Fill in the details for the peripheral:
Unique Name: RTC
Base Address: Absolute (use the drop-down menu)
Offset: 0x80154000
Size: 0x1000
Width: 4 (menu)

page 29 of 99

Access: Read Write (menu)
Peripheral Stack | = = Peripheral Details

Enter the details to create a new peripheral. Click on
an existing peripheral to edit it.

*Unique Name: RTC

No filter supported.
——————————————————————— 080155000

Mame: RTC

Description: Real-time Clock

Base Address: | Absolute =
RTC

*Offset: 080154000
Size: 000001000
Width: 4 -
Access: Read Write -

(00154000

The Offset value is the physical address of the peripheral as discovered in the datasheet for the processor.
The graphic view displays the peripheral and its address range.

The Peripherals pane (and the Memory pane) can be viewed either in the default graphic form or as a table.
You can see them as table by clicking the Switch button (') at the top. The table view allows copying and
pasting rows and columns much like a spreadsheet.

Now we’ll add registers to the peripheral.
= Click the Registers tab and add these three registers. You need to choose the peripheral in the
Peripheral column before you can choose it for the Base Address. Don’t fill in the Access Size and
Access columns.

= *Unigue Mame Mame Base Address *Offset *Size A Access Description Peripheral
1 RTC_TDR RTC_TDR RTC 0x00000020 0x00000004 Timer Data RTC
2 RTC_TLR1 RTC_TLR1 RTC 0x00000024 000000004 Timer Load RTC
3 RTC_TCR RTC_TCR RTC 0x00000028 (00000004 Tirmer Contrel - RTC

The Offset value is the offset from the base address of the peripheral.

This is already sufficient to be able to access these registers, but we’ll go further and create handy bitfield
descriptions for RTC_TCR.

= Select RTC_TCR; click the Edit Bitfield... button (') or right-click and choose Edit Bitfield...
from the context menu and enter these bitfields:

Bitfield - RTC_TCR b
*Unique Name Name = *High Bit *LowBit Access Description Enumeration
1 VARIOUS VARIOUS 12 2 various
2 RTTEM RTTEN 1 1 RTC Timer Enable
3 RTTOS RTTOS 0 0 RTC Timer One-shot
VARIOUS RTTEN | RTTOS
[12:2] [1] [0]

Notice the picture of the bitfields at the bottom of the bitfield editor.

Like the peripheral addresses, the bitfield definitions can be discovered from the processor datasheet.
Bitfields can also have an Enumeration which assigns names to values, for example DISABLED=0,
ENABLED=1. Since the interesting bitfield is just one bit wide, we’ll leave creating an enumeration for it
as an exercise to the interested reader. (Hint: create the enumeration then come back to the bitfield editor.)

page 30 of 99

= Close the bitfield editor (%) and save the file by clicking the Save button (=; Ctrl+S). You can
double-click the myregs.tcf tab to zoom it back down. You can close the file if you want.

Now we’ve finished creating the . tc£ file and we can add it to our debug configuration so that we can use
it.
= If there is a connected debug configuration then disconnect it (K).
= Right-click on the Kernel debug configuration in the Debug Control view and choose Debug
Configurations....
= In the Files list in the Files pane change the popup to Add peripheral description files from

directory; click Workspace... and choose the kxernel project which is the parent directory of the . tcf
file we created:

Mame: Kernel

-4e- Connection [[[g) Files . &% Debugger| 9= Arguments| g Environment | B3 Ever

Target Configuration = Browse For Folder = @

Application on host to download:
Select a directory:

- = distribution
File System... | |W0rkspace... Load symbols Enable or . 5 gnometris
) 1= kernel
F|Ie5_ - =% kernel_module
iﬂid peripheral description files from directory_vi - = u-boot-ws00
— . 25 xaos
—| $workspace_loc:/kernel}

| File System... | [Workspace...
. = .
-1 @] ok || concel

= Click Debug to connect to the target.
When the target is stopped, the Registers view now contains a Peripherals folder which contains the
registers and bitfields we’ve just created.

=> Expand the Peripherals and RTC folders and the RTC_TCR register.
We can see the bitfields we created in the RTC_TCR register. You can hover the mouse over a register or
bitfield to see its full name and any text that you put in the Description column in the editor. To use the
timer in the RTC we need to first set the timer load register (RTC_TLR1) to some value and then set the
timer enable bit (RTTEN) in the timer control register (RTC_TCR).

= Set the RTC_TLR1 register to 0x100000 (any reasonably large value will do).

=> Then, set the RTTEN bit in the RTC_TCR register to 1. The value of RTC_TCR (which contains
the RTTEN bit) also changes.

9= Variables | ®a Breakpoints | 1o Registers 23 ¥

Q:{; Linked: Kernel =

MName Value Size|Access
£ = Core
+ = CP15
+ = VFP
+ = MEON
= [= Peripherals
== RTC
@ RTC_TDR Bx8BBFDACE 32 R/W
@ RTC_TLR1 exaeleapas 32 RAW
= @ RTC_TCR exesaeess2 32 R/W
@ VARIOUS 8 11 R/W
@ RTTEN 1 1RW
@ RTTOS @ 1FRW

When it is enabled, the RTC copies the value from RTC_TLR1 to RTC_TDR and begins counting it down
at a rate of 32KHz. When RTC_TDR reaches zero the RTC copies the value again and repeats.

= Step the target a few times and you will see the RTC_TDR register updating “by itself”.
page 31 of 99

Since the peripheral register has a memory address we can also view it in a Memory view.
= Right-click on the RTC_TDR register and choose Show in Memory from the context menu.

A Memory opens showing the register value. The address is 14} Disassembly ({5 Memory 53 . ¥ Trace =0
shown with p: to indicate that it is a physical address. Refiest it 8| Wl v Tn v[ab) 47 7
=> Choose Refresh from the Memory view’s drop-down _ B Linked: Kernel -
menu (V) and see the value Changing. = g ~ &(SPeripherals:SRTC: sizeof{$Peripherals:$R
P:@8x38154626 BxaRaFa49F d
The Memory view also supports timed auto refresh.
= Click on the left part of the Timed auto refresh button (' ===7) that says “Refresh Off” to open the
Auto Refresh Properties dialog; change the Update Interval to, say, 0.5 seconds and then click OK:
‘> Auto Refresh Properties (23]

Auto Refresh
Update at the specified interval while the target is stopped. Suspend updates when the target is
running.

Update Interval: 0.5 seconds

Update When: | Stopped ~

':?:' | O_K d| : Cancel | | Apply |

=> Now click on the right part of the Timed auto refresh button (#) to start the automatic refresh. When
you’re finished watching the value change, click it again to stop the refresh.

= When you’re finished with your investigations, click the Continue button (¥) and let the target run.

=> With the target still running, click the Disconnect From Target button (%) in the Debugger
Control view to disconnect the Kernel debug configuration.

Next we’re going to do the application debug and profiling sections. They use an Ethernet connection to the
target and do not use the DSTREAM. You can remove the DSTREAM power and even disconnect it from
the target.

page 32 of 99

Application debug

Starting the X server on the Host

We're going to start the Xming X server on the Windows host so that the Gnometris Linux application
running on the target can open a window on the host. If you are using a Linux host, or you have a monitor,
keyboard and mouse attached to your target, then you don't need to use Xming.

= Start the XLaunch wizard from Start > All Programs > Xming > XLaunch. Choose Multiple

Windows, "Next >", Start no client, "Next >", check No Access Control, "Next >" and click the
Finish button.

X Display settings @
Select display settings -
Choose how Xming displays programs. (
N
@ Multiple windows |3 Fullscreen X .
()
X Session type
€ Select how to start Xming C
Choose session type and whether a dient is started immediately. (
=
Displg
@ start no dient
This will just start Xming. You will be able to start local dients later.
M Additional parameters
Specify parameter settings -
Enter dipboard, remote font server, and all other parameters. (
, -
V| Clipboard | No Access Control
Start the integrated dipboard manager Disable Server Access Control
Remote fd X Finish configuration @
Configuration complete c
Choose whether to save your settings to an XML file. (
Additional

-, -

Click Finish to start Xming.

‘You may also 'Save configuration’ for re-use {run automatically or alter via Joad option).

Save configuration Indude PUTTY Password as insecure dear text

| < Back |[Finish]| Cancel || Help |

Note: Using No Access Control is simple, but insecure. Any machine connected to the same network as
your host will be able to open windows on the host.

When started, Xming will not initially display any window. The only indication that it is running will be an
icon in the Notification area of the task bar.

Customize...

BN D e

page 33 of 99

If you have trouble with the target and host communicating and your host is running a firewall you may
need to configure it to allow network traffic from the target (for example, make IP address 169.254.0.100 a
"friend").

Importing Gnometris

We need to import the two example projects distribution and gnometris if they have not been imported
already.
=> Look in the Project Explorer view and if distribution and gnometris do not appear there, follow
the instructions for importing them in Importing projects in the appendix on page 87. Also follow the
instructions for changing the Gnometris sources in the appendix on page 89.

If Project > Build Automatically is checked, the gnometris project will be built automatically after it has
been imported. The build produces two files at the top level of the project: gnometris, which is the
application, and 1ibgames-support.so Which is a shared library used by the application. These two files
will contain debug information. Copies of these two files with the debug information removed are created in
the stripped subdirectory of the project. The project contains pre-built copies of these four files which will
be overwritten when you build the project. It also contains backup copies of the four files named
gnometris_backup and libgames-support.so_backup Which do not get rebuilt. We won’t be using these
backup files.

Connecting to the Target

Next, we'll establish a connection to the target using Eclipse's Remote Systems Explorer (RSE) so that we
can browse its file system and create a terminal connection. The Remote Systems view is part of the DS-5
Debug perspective, so we’ll switch to that perspective now. It’s possible that the RSE connection has
already been created in the Remote Systems view for you.

=> Choose Window > Open Perspective > DS-5 Debug. If DS-5 Debug isn’t listed then you are

already in the DS-5 Debug perspective. You can also switch perspectives by using the buttons on the

& L T]
Perspective toolbar (& % D53 Debug).

= If the Remote Systems view is not open, you can open it by choosing Window > Show View >
Other... > Remote Systems > Remote Systems in any perspective.

= Click on the tab of the Remote Systems view to bring it to the front.

=> We won’t be using the Local connection, so you can collapse it.

= If there is no My Target connection, create one by following the instructions in the appendix on page
90.

= Browse the target's file system; Expand My Target > Sftp files > Root. If the connection has Files
instead of Sftp Files, then the connection was not created correctly and you should Disconnect it, Delete
it and recreate it.

page 34 of 99

= Enter User ID=linaro, Password=linaro; check Save user ID and click the OK button. There will be
a few authentication dialogs; accept them.

#¢ Debug Control | (7 Project Explorer H Remote Systems &3
o ~ -
B Lecal
A My Target
T Sftp Files < Enter Password [t
& My Home
o Root System type Linux
Pending... Host name: 169.254.0100
b Shell Processes User ID: linaro
% S¢h Shells

).., $sh Terminals Password (optional):
7 Save user ID

Save password

i OK Cancel

You can also expand My Home to browse the home directory of the user, which iS /home/1inaro for the
linaro user.

You can copy files to and from the target by dragging them between the Remote Systems view and the
Project Explorer view or Windows Explorer windows. As we'll see below, it's also possible to copy files
to the target automatically as part of the debug configuration.

If you want, you can double click a text file on the target, for example /etc/bash.bashrc, and view it or
even edit it in Eclipse — but it's probably best if you don't save any changes unless you are sure that you
know what you are doing.

Now we'll create a terminal connection so that we can execute commands easily on the target. You can
Collapse the Sftp Files to get them out of the way.

= Create a Terminal by right-clicking on Ssh Terminals and choosing Launch Terminal.
#5 Debug Control | [Project Explorer | 45 Remote System &3

)
& 8| | E

- Ef Lecal
4 ¥ My Target
. ¥, Sftp Files & Refresh]
3 Shell Proces

% Ssh Shells -
%’.J Sh Tenming Clear Password

Disconnect

&8 Launch Terminal

Properties Alt+Enter

This will open a Terminals view in Eclipse that can be used to execute commands on the target. (This is
different from, but confusingly similar to the Serial view). The picture below shows the output from the
example target image included with DS-5. If your target is running a different distribution the output will be
different.

A8 Terminals &3

f\,‘J Wy Target &2

BusyBox v1.14.3 (2009-11-10 16:54:51 GMT) built-in shell (ash)
Enter 'help' for a list of built-in commands.

pwd
froot
1s

1ager hosts.deny rc6.d
inictab rcS.d
1d.so.cache resolv.conf
1d.so.conf rpc

arm platform wversion matchbox

page 35 of 99

You can use Launch Terminal more than once if you want to have multiple terminal sessions to the target.

Debugging Gnometris on the Target

If you’ve just done the U-Boot and kernel debugging some of the following will already be familiar, but the
views are discussed in significantly more detail.

The Gnometris example project includes two debug configurations, gnometris-gdbserver-example, and
gnometris-RTSM-example, for running the application on the Real Time System Model (RTSM). You can
try the RTSM debug configuration later if you want, but we are going to ignore them for now and make our
own. If the Xaos example has already been imported, you’ll also have debug configurations named xaos-
RTSM-example and xaos-RTSM-example which we’re also going to ignore.

Since we are using a Snowball board as our target, we'll create our own debug configuration. The
gnometris debug connection may already have been created for you in which case you can just select the
existing connection and examine the settings.

=> Choose Run > Debug Configurations... then select DS-5 Debugger and click the New launch

configuration button (') to create a new debug configuration. (You can also double-click DS-5
Debugger or right-click it and choose New instead.)

= Debug Configurations

Create, manage, and run configurations

Create, edit or choose a configuration to launch a D5-5 debugging session.

E\} | SR Configure launch settings from this dialc
el s - - - Press the 'New' button to create a
| Mew launch configuration |-

C/C++ Application =| - Press the 'Duplicate’ button to cop

o | C/C++ Attach to Applicat
[E] C/C++ Postrnortem Debu

x

- Press the 'Delete’ button to remow

[£] C/C++ Remote Applicatic || 5 - Press the 'Filter’ button to configui

a4 |5 DS-5 Debugger
45 gnometris-gdbserver-
#5 gnometris-RTSM-exar
5 waos-gdbserver-sxamy || Configure launch perspective settings fro

- Edit or view an existing configurati

5 waos-RTSM-example
&' Iron Python Run

=> Give the debug configuration a name, | used gnometris.
In the Connection pane of the debug configuration we need to specify the platform and IP Address of the
target.

=> Type gdbs in the Filter platforms filter box so that the only the matching platforms are shown.

=> Expand Generic > gdbserver with NEON > Linux Application Debug in the project list.

=> Choose the Download and debug application. My Target will already be the selected RSE
configuration and Use RSE Host and Use Extended Mode will be checked. Leave the Port number as

page 36 of 99

5000.
Mame: gnometris
=1 Connection) Files | B Debugger| 09= Arguments | B Environment | EJ Event Viewer

Select target

Select the manufacturer, board, project type and debug operation to use. Currently selected: Generic - gdb

gdbs

4 Generic
- gdbserver
4 gdbserver with NEON
4 Linux Application Debug
Connect to already running gdbserver
Download and debug application
Start gdbserver and debug target resident application

D5-5 Debugger will download your application to the target systemn and then start a new gdbserver session
application,

Connections

RSE connection | My Target hd

Address: | Use RSE Host
gdbserver (TCP) | port; 5000
| Use Extended Mode

The Debug button is disabled because the debug configuration is not yet complete. The problem is
explained near the top of the dialog: [Files]: No target download directory details entered. We will fill
in the missing details in the other panes.

In the Files pane of the debug configuration we need to specify the application to download, the target
directory to download it to, the location of the symbols (debug information) and any additional files to
download.
=> For Application on host to download, use the Workspace... button to choose the copy of
gnometris iN the stripped sub-directory. The symbols are not needed on the target. The unstripped
version will also work, but it will take longer to download and take up more space on the target. Do not
use the gnometris_backup copy because it will not include the changes made earlier.
= Put /home/linaro in the Target download directory. This is the home directory of the root user.
Any other writable directory, like /tmp, would work as well. The application and shared library, which
we'll specify below, will be downloaded to this directory when we start debugging.
We can leave the Target working directory empty. By default the download directory will be used as
the working directory.
= In the first entry in the Files list, choose Load symbols from file and use the Workspace... button to
choose the copy of gnometris with symbols (the copy not in the stripped sub-directory).

= Click the add button () to add a second entry to the Files list.

page 37 of 99

= In the second entry in the Files list, choose Other file on host to download and use the

Workspace... button to choose the copy of 1ibgames-support.so in the stripped sub-directory.

= Open

Select a file:

= [= =)

-4~ Connection [z} Files %% Debugger| (4= Argumer]

Target Configuration
Application on host to download:

S{workspace_loc:/gnometris/stripped/gnormetris}

File System... | | Workspace...

Target download directory:

Load symbols

homedinara

=[5 f=s]

=
~ Open Target working directory:

Select a file:

= RemoteSystemsTempFiles

4 [=% gnometris

= RemoteSystemsTempFiles
= distribution

.«cproject
=] .project
@ Makefile
- [= gnome-games-2.26.2
gnometris
gnometris-RTSM-examplelaunch
gnometris_backup
[&) libgames-supportse
libgames-support.so_backup
i@ readme.html
4 (= stripped
gnometris
gnometris_backup
a4 libgames-support.so
libgames-support.so_backup

Other file on host to download - |

El S{workspace_loc:/gnometris/stripped/libgames-sug

File System...

gnometris-RT5M-example.launch
gnometris_backup
[&} libgames-support.se
libgames-support.so_backup
@ readme.html
4 [= stripped
gnemetris
gnometris_backup
a4 libgames-support.so
libgames-suppert.so_backup
. 25 xaos

(+]

Cancel

. 1= distribution Files =L xaos
< -
.= gnumetr!s |Lnad symbols from file v|
«cproject -
5] -project El ${workspace_loc:/gnometris/gnometris} e — @
Makefile File System... | | Workspace... | [¥] Enable on-dg saEEaid=
+ [=- gnome-games-2.26.2
gnometris — 4 » I RemoteSystemsTempFiles

- =% distribution
4 TDC gnometris
.cproject
|2 .project
Makefile
= gnome-games-2.26.2
gnometris
gnometris-RTSM-sxample.launch
gnometris_backup
5} libgames-support.so
libgames-support.so_backup
& readme.html
4 [stripped
gnometris
gnometris_backup
&) libgames-supportse
libgames-support.so_backup
=5 xaos

You do not need to add the symbol file for the shared library because the debugger will search for it
when it sees the shared library get loaded at runtime, but you could add another entry to the Files list to
load symbols from the unstripped copy of 1ibgames-support.so and the debugger would use it instead

of searching.

In the Debugger pane of the debug configuration:

We are going to use Debug from symbol so that DS-5 will begin debugging by running the application

and stopping at main.

You can specify debugger scripts and/or commands to execute as part of the connection process. The

dialog fields have tooltips that explain at
what point during connection the scripts and
commands are executed. An example would
be to use the Execute debugger commands
field to disable some breakpoints and enable
others. The script files can be written in
either the simpler, gdb-like, DS-5 command-
line scripting language (. ds files) or the
more powerful and complex scripting
language Python (.py files). But we don't
need to use them, so we'll just leave them
disabled.

Run control

Connect only

Host working directory
| Use default

${workspace_loc)

You can specify the host working directory
which affects certain debugger commands

Paths

1= Connection uﬂ}' Files | £5 Debugger

Execute debugger commands

9= Arguments| g Environment

Debug from entry point @ Debug from symbol main

Run target initialization debugger script (.ds)

Run debug initialization debugger script (.ds)

~ Browse For Folder

Select a directory:

o [-o-=

- == distribution
. [EE gnometris
3 'bc Xaos

1= RemoteSystemsTempFiles

| Shared library search directory v|
E| Sfworkspace_loc:/gnometris}

| File Systern... | |W0rkspace... |

=)

] | Cancel

that access the host file system (for example dump, 1og and source). The default is fine.

You may need to scroll down or grow the dialog by dragging the lower right corner to see the entry in
the Paths list.

= In the first entry in the Paths list, choose Shared library search directory and use the Workspace...
button to choose the gnometris project directory. The debugger will search this directory for symbols
of shared libraries when they are loaded as the application starts or runs. In our case the debugger will
find the copy of 1ibgames-support.so With symbols there.

In the Arguments pane of the debug configuration: = Conmection 125 Files | 3 Debugge [0 B

= Type --display=169.254.0.1:0 (no spaces) in the T A e
Program Arguments field: [display=169.254.0.1]

The --display=169.254.0.1:0 argument tells Gnometris to open its window on the X server running on
the host. If you want Gnometris to display on the target's own X server, you would use
--display=:0 instead.

We could use the Environment pane to set any environment variables that we needed on the target. For
example we could set DISPLAY instead of using the --display command-line argument. In this case, we
can leave the Environment pane blank.

= Click the Debug button. If the Debug button is disabled then Eclipse will put a message explaining
why at the top of the Debug Configurations dialog. If the Confirm Perspective Switch dialog appears
check Remember my choice and click OK.

DS-5 will download the application and shared library and start running it using gdbserver. Some progress
messages will appear in the App Console view:
B App Console i2

Preparing the debug session

$# cd "/root"

export LD LIBRRRY PATH=".:5LD LIBRARY PATH"
gdbserver :5000 "./gnometris" ——display=169.254.0.1:0
Process ./gnometris created; pid = 640

Listening on port 5000
The game will start running and stop at main() before it has opened its window. If the game does not start,
there may be error messages in the App Console view that indicate what is causing the problem. The
debugger will look like the screen shot below.

When you create a debug configuration, like gnometris, in the Debug Configurations dialog it also appears
in the Debug Control view. The gnometris-RTSM-example debug configuration that was imported with
Gnometris appears in the Debug Control view. Since we're not going to use it for the time-being, you can
select gnometris-RTSM-example in the Debug Control view and click the Remove Connection button (

%), You can also right-click on the configuration and choose Remove Connection from the context menu
. You can also remove xaos-RTSM-example if it’s there. We’ll see later how you could get it back if you
want.

If you want to restart the debug session from the beginning for some reason, you can click the Debug from

main() button (':N) in the Debug Control view. Or you can disconnect and reconnect the debug
configuration:

1. With the debug configuration selected in the Debug Control view, click the Disconnect From
Target button (").

page 39 of 99

2. Click the connect button (hi) to re-connect. You can also double-click the configuration or open
the Debug Configurations dialog, choose the debug configuration there and click the Debug button.
Any breakpoints that were set in the configuration will be remembered between connections.

Detailed Debugging

Because Debug from symbol is set to main in our debug configuration, when the DS-5 Debugger connects
to the gdbserver that it starts on the target, it will stop the application at main.

#5 Debug Cont £2 L5 Project Expl ﬂﬁ Remote Sys = O/ Commands &2 | Histo Scripts = O ||td= Variables 53 g Breakpoi | 0 Rec
g] p Y y P 3 <
o W K| A v RT T B Epio~-&~
‘ gnometris connected (Generic - gdbserver with NEON) <«’=={> Linked: gnometris - <«’=={> Linke
= Active Threads cd "C:\Users\sdouglas\Documents\D5-5 Workspac: + MName Value
&% Thread 3276 #1 stopped on breakpoint working directory "C:\Users\sdouglas‘\Document: = (= Locals 2 variables
= main set debug-from main © arge 3
— oo start -
=0 wait + @ argv Bx7ESBADD4
(= All Threads Execution stopped at breakpoint 1: @x@@eeC154 ||| (= File Statics (current) Mot Loaded
In main.cpp + = Globals Mot Loaded
exeaeaCl54 43,8 {
Deleted temporary breakpoint: 1 z
] m v
a I 3
‘ gnometris connected Command: Submit
Tt modex.c | uaccess.h L€l main.cpp &2 17 =0l Disassembly % ‘B Memory| = Modules EE Outline | 4% Trace
3)) - G‘=?> Linked: gnometris »
- #include "tetris.h i) g+ <MNext Instruction> 100
41 int Address Opcode Disassermnbly
42main(int argec, char *argv[]) BxBEEeC144 BLX r3
» 43f PxBEBC1AS PoOP {r3,pc}
Ay gboolean retval; BxBBaBC14C DCD Bxeea1Ce83
45 GError *error = NULL; BxepaaClse DCD @xeaa02000
46 main
47 if (!games_runtime_init ("gnometris”)) o | @x2e88C154 PUSH {r4,r5,ril,lr}
43 return 1; BxBe88C158 ADD ril,sp,#8xc
49 Bx8e8C1sC sSuB sp,sp,#0x48
5@ setgid_io_init (); GxBBBBC168 STR ré, [ril,#-8x58]
51 BxepeaCled STR rl, [ril,#-6x54]
2 int cmdlinelevel = @; Bx0BeBC168 MoV r3,#
BxepaaCleC STR r3.Tril.#-0x181

When the game stops at main it will not have opened its window yet.

Functions view

We’ll use the Functions view to set a breakpoint on BlockoOps: : rotateBlock () Which is called when the
user rotates the current block, by pressing up-arrow.

= Click on the tab of the Functions view to bring it to the front; then click on the Search button (¥)
to open the Search Functions dialog; type rot as the search text (or any other part of the name
BlockOps::rotateBlock); select Blockops: : rotateBlock (bool) and click OK.

page 40 of 99

The function Blockops: : rotateBlock () IS how selected in the Functions view.

()= Variables | ® Breakpoints | ma Registers B Expressions | fl) Functions &3 A

4:5 Linked: gnometris-RT5M-example ~

Name
U DIV P I PULDTOC RN TEia ooty

@ BlockOps:moveBlockDown()
@ BlockOps:dropBlock()

a | Start Address a| End Address

BlockOpsurotateBlock(bool)

@ BlockOps:moveBlockRight()

URIUUIUDTC URIOUIUC ST

00001038 0:x00010C9F
0:00010CAQ 0:x00010CCF

= Copy Ctrl+C
Select All Ctrl+A

@ BlockOpsimoveBlockLeft()

@ BlockOps:isFieldEmpty()

@ Renderer:drawCell(_cairo®, int, int)

@ Renderer:drawForeground(_cairo®)

@ Renderer:zrender()

@ Renderer:drawBackground(_cairo™)

@ Renderer:~Renderer()

@ Renderer:~Renderer__sub_object()

@ Renderer:~Renderer__deallocating()

@ themeMNameToMumber(const char®)| @
@ Renderer:Renderer{_cairo_surface®, | T
@ Renderer:Renderer__sub_object(_cail "
@ Renderer:setTarget(_cairo_surface®)

@ Renderer:setBackground(_cairo_surf

@ JoinedUp:drawInnerCorner(_cairo®)

@ JoinedUp:drawQOuterCorner(_cairo™)

@ JoinedUp:drawHEdge(_cairo™)

@ JoinedUp:drawVEdge(_cairo™) ®
@ JoinedUp:drawCell(_cairo®, int, int)

< I L

=> Double click on Blockops: : rotateBlock () t0 Set a
breakpoint on it. The breakpoint symbol (&) will appear.

Run to Selection

Set PC to Selection

Show in Source h
Show in Memaory d

Show in Disassembly

Toggle Breakpoint

Toggle Trace Start Point
Toggle Trace Stop Point
Toggle Trace Trigger Point

Enable Breakpoint

Disable Breakpoint
Remove Breakpoint
Resolve Breakpoint

Breakpoint Properties

e =g

TTOTTITE
g -

gnome
gnome

gnome
gnome
gnome
gnome
gnome
gnome
gnome
gnome
gnome
gnome
gnome
gnome
gnome
gnome
gnome
gnome
gnome
gnome
gnome
gnome

2

Then right-click on Blockops: : rotateBlock () ; then
choose Show in Source from the context menu.

We can see that the breakpoint we’ve set is on line 134 of
blockops-noclutter.cpp. We could also use the Project
Explorer view to open the source file blockops-noclutter.cpp by double-clicking on it.

75 Debug Con |l Project Expl 3

4 % gnometris
> [Includes

,HE Remote Sys =8
ik

=

-~

4 = gnome-games-2.26.2

4 [= gnometris
: = help
[pix

. [€ blockops.cpp

> blockops.h

- | |lt] blockops-noclutter.cpp
» |h|] blockops-neclutter.h

- g blocks.cpp

Outline view (another brief digression)

You can use the handy Outline view to quickly navigate the

front-most source view. Clicking on a function name will

scroll the source view so that the beginning of the function is

visible.

The Outline view has a button that toggles between sorting the
view alphabetically (|2}, and showing the list in file order.

There are also buttons that show or hide different kinds of
entries. You can get a tooltip description of the buttons by
"hovering" the mouse pointer over them.

Breakpoints

page 41 of 99

[€] blockops-noclutter.cpp 53

129 return moved; o~

1 ool

o

3

3
133 BlockOps: :rotateBlock({bool rotateCCW

o1« [——

3

3

3

W ok O
o

bool moved = false;

int r = rot;

=

19} Disassembly | ‘5 Memory | = Modules 0= Qutline 52

el R o ¥
= config.h
&l blockops-noclutter.h
=l blocks.h
BlockOps:BlockOps()
BlockOps:~BlockOps()
BlockOps:blockOkHere(int, int, int, int) : bool
BlockOps:getlinesToBottom() @ int
BlockOps:moveBlockLeft() : bool
BlockOps:moveBlockRight() : bool
BlockOps:rotateBlock{bool) : bool
BlockOps:moveBlockDown() : bool
BlockOps:clearTarget() : void

Eo Y

@
@
=
@
@
@
@
@
@

COLUMNS / 2 + 1:
0

posx
posy

blocknr = blocknr next == -1 ? g 1
blocknr next;

rot = rot _next == -1 ? g random ir

int cn = random block colors ? g 1
blocknr % NCOLOURS;

color = color next == -1 ? cn : ct

m

You can also set a breakpoint by double-clicking in the left margin of a source or disassembly line where the
breakpoint symbol (@) will appear. You can delete a breakpoint by double-clicking it, too.
= Set a breakpoint by double-clicking in the left margin on line 297 in
BlocksOps: :generateFallingBlock (). This function is in the same file, blockops-noclutter.cpp.
You can go directly to a line by number by using the Navigate > Go To Line... (Ctrl+L) command.

BlocksOps: :generateFallingBlock () IS called when Gnometris wants to create a new block

Breakpoints view
There is a list of the current breakpoints in the Breakpoints view

9= Variables | ®g Breakpoints I3 o Registers By Expressions| f() Functions =8
oo w T
<.f'{> Linked: gnometris =
V] @ 0x2AABASDC @ 0x2AABASDC [Debugger Internal ARM]

V| @ blockops-noclutter.cpp:l39 @ BlockOps:rotateBlock+0:d4 000010038 [#2 ARM]
V| @ blockops-noclutter.cpp:297 @ BlockOps::generateFallingBlock+0x54 000010788 [#3 ARM]

Besides the breakpoints you’ve set, you can see the debugger internal breakpoints that DS-5 uses.

(Possibly) Fun things to do with breakpoints in the Breakpoint view

e You can disable each breakpoint individually without removing it by unchecking it. When a
breakpoint is disabled it will be displayed as hollow.

int r = rot;

if (rotateCCW)
{

if (--r < 0) r = 3;

e There is also a button to globally skip all breakpoints (®). The individual enable status is
remembered while the breakpoints are globally skipped.

e There are buttons to delete individual breakpoints (X) and delete all breakpoints (k.).

e There is also a button (E:“) that will open the source file(s) of the selected breakpoint(s). Double-
clicking a breakpoint in the breakpoint view will also open its source file.

e There is a Breakpoints view drop-down menu (~"). You can use the commands in it to import and
export the breakpoints from/to an XML file. You can control the sorting of the Breakpoints view.

e You can use copying (Ctrl+C or right-click) in the breakpoints view to get a text list of the selected
breakpoints.

e You can paste or drag text into the breakpoints view to set breakpoints. For example, you can select
the name of a function being called in a source view and drag it to the breakpoints view to set a
breakpoint.

e You can also set a breakpoint by dragging a function from the Outline view into the Breakpoints
view.

New views, linking and multiple configurations

You can choose New Breakpoints View in the Breakpoints view’s drop-down menu to create a new
breakpoint view. Most views have a similar command. There are a few reasons why you might want to do
this. Some views, for example the Memory view can be set to show different regions and you might want
to see multiple Memory views at once. Some views, like the Variables view can be “frozen” and you might
want to see some frozen versions and an unfrozen version at the same time.

The reason you might want more than one Breakpoints view is different. Although we won’t do it in this
workshop, DS-5 Debugger can have multiple debug configurations running at the same time on the same or
different targets. The multiple debug configurations and their threads and stacks appear in the Debug
Control view. By default the other views change the information that they are displaying according to
which debug configuration is currently selected in the Debug Control view. This is shown by Linked: in

page 42 of 99

the link menu near the top of each view 5 Linked: gnemetris~ yoy can use this menu to change a view so
that it “sticks” with one debug configuration instead of changing to show the information about the currently
selected configuration. So if you had two configurations you could use a second Breakpoints view to see
the breakpoints in both configurations at the same time.

You can reset all the views to the default Linked: setting by using the Reset DS-5 views to Linked menu
item in the Debug Control view’s drop-down menu (™).

More ways to set breakpoints

You can also right-click on a function in the Outline or Functions views and choose the Toggle
Breakpoint menu item.
19} Disassembly | “5 Memory | = Modules 5= Qutline &3

BRY e
=l blocks.h

@ BlockOps:BlockQps(

@ BlockOps:~BlockOps(

® BlockOpstblockOkHere(int, int, int, int) : bool

@ BlockOps:getlinesToBottom() @ int

@ BlockOps:moveBlockLeft(: bool

@ BlockOps:moveBlockRight() : bool

@ BlockOpsurotatef!--t-r-mntiotonl

@ BlockOps:moveE Open Declaration F3
@ BlockOps:clearT; Open Type Hierarchy F4
< BlockOps:geners Open Call Hierarchy Cirl+Alt+H
® BlockOps:setlise Open Include Browser Ctrl+Alt+I
@ BlockOps:dropBl

@ BlockOps:falling| Refactor L4
@ BlockOps:elimin)

©® BlockOps:checkf Declarations r
@ BlockOps:geners References 2
» BlockOpsiem

3 BIDckOEs::emEg @ Toggle Breakpoint

@ BlockOps:putBlockInField(int, int, int, int, SlotType) : void

You can also type a break command into the command-line at the bottom of the Commands view.
B Commands &3 B History “55 Scripts =8

EIRE NI I
<,|='='{; Linked: gnometris =

Execution stopped at breakpoint 1: 0x0000C154 -

In main.cpp

0x0000C154 43,0 i

Deleted temporary breakpoint: 1

break BlockCps::rotateBlock

Breakpoint 2 at 0x00010CDO

on file blockops-noclutter.cpp, line 134 -
4 n I
Command: break BlockOps:rotateBlock Subrmit

You can use a function name, a file name and line number (for example, blockops-noclutter.cpp:134)
or an address (for example, *0x11690) as the argument to the break command.

We'll see more features of breakpoints and more ways to set them later. We'll also see more uses of the
Commands view later.

Source and Disassembly views

= If you've changed the breakpoints since you set them, make sure the two breakpoints are set, enabled
(checked) and not being skipped.

= Click on the tab of the Debug Control view to bring it to the front, if it is not already in front. Click

the "beating" Continue button (/¥) in the Debug Control view. The game begins running and, after a
bit, opens its window.

page 43 of 99

Choose Game > New Game (Ctrl+N) in the Gnometris window.
()(Gnometris EI@

LRGN Settings Help |

. Scores

&) Quit Ctri+0

Score: 0
Lines 0
Level 1

The game is stopped by the breakpoint in BlocksOps: : generateFallingBlock ().

L€l main.cpp || blockops-noclutter.cpp I3 = B (13} Disassembly 2 Memory| = Modules| o= Outline
220 BlockOps: :generateFallingBlock () - “Z, Linked: gnometris -
& g+ <NextInstruction> 100
posx = COLUMMS / 2 + 1:
posy = 0; Address Opcode Disassembly
0x00010760 TR rl0, [r4, 78]
bFlocknr = blocknr next == -1 ? g random int range| By | LT DL LE i=Zn (B ZTE] o [IIESUTEED)
blocknr mext: = - = 0x00010768 LDR ro, [r3,%#0]
- . 0x0001076C CHI ro, 71
rot = rot next == -1 ? g random int range (0, %) : 0x00010770 ENE {pc}+0x10 ; 0x10780
int cn = random block colors ? g random int range | 0x00010774 MOV 0, 30
blacknzr % NCOLOURS; 0x00010778 MOV r1,#4
color = color_next = -1 ? cn : color_next,; 0x0001077C BL {pc}-0x4f68 ; Oxb&l4
301 000010780 STR ro, [r4, $¥0xc]
302 blocknr next = g_random int_range (0, tableSize): - 0x00010784 LDR r3, [pc, $248] ; [0x10884]

The current PC location is shown by an arrow (=) in the left margin of both the source and Disassembly
views and by the dark green highlighting. The light green highlighting in the Disassembly view shows all
of the assembly instructions that correspond to the current source line.

The breakpoint that caused the stop is also highlighted and has a special icon (%) in the Breakpoints view:
9= Variables | ®a Breakpoints 52 “._mu Registers| X" Expressions a5 w ¥ =0
“T, Linked: gnometris ~
7| @ blockops-noclutter.cpp:139 @ BlockOps:rotateBlock+0xd 4 0:00010CE4 [#2 ARM]
J| @ blockops-noclutter.cpp:297 @ BlockOps:generateFallingBlock+0:x54 000010764 [#3 ARM, 1 hit]

We'll see more features of source and Disassembly views later

Variables view

The Variables view shows the local, file static and global variables. The values that can be changed have a
white background and the values that cannot be changed have a very light gray background.

)= Variables 3 9 Breakpoints| ms Registers Y Expressions ¥ T =0
Name Value Type Count|Size| Location | Access
= = Locals 2 variables
H @ this 0x0005F&88 BlockOps® const 1 32 SR4 RAW
cn Unavailable int 32 RO
+ = File Statics (current) Mot Loaded
+ = Globals Mot Loaded

page 44 of 99

The Locals part of the view shows the arguments and local variables to the function. Because of the current
location of the PC the variable cn is not available yet. We will be able to see it after we have stepped past
its initialization on line 298. Since BlocksOps: :generateFallingBlock () isa C++ member function it
has a this argument that is a pointer to a Blocksops structure.

= Expand this to see its data members

1= Variables % . ©g Breakpoints| o Registers| %" Expressions ¥y ~ — 08
Marme Value Type Count|Size| Location |Access
= = Locals 2 variables
= @ this 0x0005F&88 BlockOps™ const 1 32 SR4 RAW
@ useTarget false™ bool 8 0:0005F688 R/W
+ @ field 0x0005D7C0 Block™ 1 32 0:0005F68C RAW
@ blocknr 3 int 32 0:0005FG90 R/AW
@ rot 0 int 32 0:D005F694 R/AW
@ color 0 int 32 0x0005F658 R/AW
@ posx g int 32 0x0005F68C RAW
@ posy 0 int 32 0x0005F6A0 R/AW
@ cn Unavailable int 32 RO
+ = File Statics (current) Mot Loaded
+ = Globals Mot Loaded

The Location column shows that this is currently in register R4 and it shows the memory addresses of the

data members. Notice that the rot and color data members have the value zero, since they were initialized
to those values in the Bl1ocksops constructor. They will be set as we execute the next few source lines. The
Size column shows the size of each variable in bits. The Access column shows if the variable or member is

read-only (RO) or read/write (R/W).

The £ield data member has type Block** and is a pointer to an array of COLUMNS Block*s that was set in
the constructor. corumns is a global variable; we'll find out its value.
= Expand the Globals part of the view to see the global variables

)= Variables 2 9% Breakpoints| 0 Registers Erid Expressions ¥y ~ — O
Marme Value Type Count| Size | Loca
@ color 0 int 32 00005 ~
@ posx g int 32 00005
@ posy 0 int 32 00005
o cn Unavailable int 32
+ = File Statics (current) Mot Loaded
=+ = Globals 18 vanables =
@ BLOCK_SIZE 40 int 32 00001
@ COLUMMNS 14 int 32 0x0001
@ LINES 20 int 32 0x0001
+ @ ThemeTable const ThermneTableEntry[5] 5 320 0s0001.
+ @ blockTable int[7][4][4][4] 7 14336 (w0001
@ blocknr_next -1 int 32 (0001 _
4 } ; L — T -"":

We can see that the value of coLumns is 14.
= To see all 14 elements of the array that the data member £ields is pointing to, we can set the Count
column for fields to 14 and expand it

()= Variables 2 9% Breakpoints| 1 Registers Y Expressions y ~ = O
Marme Value Type Count| Size | Loca
=} = Locals 2 variables -
=@ this 0x0005F688 BlockOps* const 1 32 5R4
@ useTarget false~ bool 8 00005 | =
=+ @ field 0x0005D7CO Block™ 14 32 00005
H @ [0] 0x0005FB00 Block™ 1 32 00005
H @ [1] 0x0005FBAE Block™ 1 32 00005
+ @ [2] 0x0005FCS0 Block™ 1 32 00005
+ @ [3] 0x000SFCFE Block™ 1 32 00005
@ [4] 0x0005FDRO Block® 1 32 00005
@ [5] 0x0005FE48 Block® 1 32 00005
H @ [6] 0x000SFEFO Block™ 1 32 00005
H @ [7] 0x0005FF9E Block™ 1 32 0:0005 _
4 S B ;I'I'-- B— = | T -"";—

= Collapse the data member £ields to hide the array elements again; we aren't really interested in
them.

page 45 of 99

You can change the format used to show values by selecting one or more rows, right-clicking and choosing
a new format from the context menu. It won't hurt anything if you want to try it out.

)= Variables 71 . ©o Breakpoints| 7 Registers| %" Expressions

Mame Yalue Type C
@ posy 0 int
@ Unavailable int
== File Statics (current) Mot Loaded
=F = Globals 18 variables
-_EI_I
| = COLUMNS ||
@ LIMES = Copy Ctrl+C
@ ThemeTable bleEntry[5]
e Select Al Ctrl+ A =
@ blocknr_next Send to b
@ color_next
@ commands Binary
@ default_bgimage Boolean
© do_preview Hexadecimal N
@ offsetTSize Octal [
@ offsetTable
@ random_block_c ¥ | Signed Decimal
@ rot_next Unsigned Decimal
@ rotateCounterClockV true ™ bool

Depending on the type and location of the variables selected, the context menu will have some of the
following items; feel free to try them out. We'll see the Registers, Memory and Expressions views later.

&)= Variables &2 9 Breakpoints| 1 Registers| %" Expressions & 7 =0
Mame Walue Type Count| Size | Location |Acces
= B Locals 2 variables
© us 5| Copy Crl+C 8 0x0005F688
D fie 14 32 0:0005F68C W
© bl Select All Ctrl+4 32 0X0005F690 RAW
@ rof Show in Registers 32 0«0005F894 R/W
O & Show Dereference in Memory el
@ po o 32 0:0005F68C R/W
® po Show Dereference in Disassembly 32 H0005F6A0 RAW |2
@ cn Send to 4 Expressions View p
¥ (= File Stati S
= = Globals Binary Mew Expressions View
@ BLOCQ Boolean 32 0:001COED Rrw
@ COLY Character 32 0:0001CDES RAW
@ LINES 32 0x0001CDDE R/W
@ Them ozt Ent[S] 5 320 0:000130C8 RAW
% block ¥ | Headecimal 7 14336 (0001C50C RAW
@ block Octal 32 0:0001CDEE R/W
@ color Signed Decimal 32 0:0001CDFD RYW
@ com Unsianed Decirnal 32 0x40040AC0 RAW
o defa nHgned Teame 8 0:0001CES6 RAW

e If the variable is stored in a register then Show in Registers will select it in the Registers view.

e If the variable is stored in memory then Show in Memory will make it visible in the Memory
view and Show in Disassembly will make it visible in the Disassembly view.

e If the variable has a pointer type then Show Dereference in Memory will show the memory that it
points to in a Memory view and Show Dereference in Disassembly will show the memory that
it points to in a Disassembly view.

¢ You can choose Send to > Expressions View to add the selected variables to an existing
Expressions view or Send to > New Expressions View to create a new Expressions view
containing the selected variables.

The values displayed will change as we step through the program execution. Changed values are shown

with yellow highlighting. We can also change the values if we want (not now though, we'll do that later).
You can choose values for variables of Boolean and enum type by using a drop-down menu.

page 46 of 99

You can change which columns are displayed in the Variables view by right-clicking on the column
headings and choosing from the context menu.

(9= Variables 3 95 Breakpoints| 1 Registers| ¥ Expressions

Marme = b lem Type
= = Locals v | MName
= @ this Display Name Dps* const
@ uselarget | ' yalue
711 -
@ blocknr S
@ rot v Count
@ color v | Size
© posx v Location
@ posy v | Access M
== File Statics (currel Show All Columns
= (= Globals Reset Columns
@ BLOCK_SIZE ELe A a1

You can also change which columns are displayed in the Registers, Expressions and Modules views this
way.

The File Statics are the variables that are declared with the C/C++ static keyword and are local to a file.
The current file, blockops-noclutter.cpp does not have any file statics. You can change which files are
listed under File Statics by right-clicking on the File Statics row and choosing from the context menu.

()= Variables i1 ®@ Breakpoints| Mt Registers 1y Expressions

Mame Value |Type| Count Size|Location | Access
= Locals 2 variables
B B= File Statics (curre : : |
blockops-nacl = oy Rty
(= Globals Select All Ctrl+A

Show All Compilation Units
v Only Show Current Compilation Unit
Only Show Compilation Units With Static Variables M,

E.

Send to »

The Variables view has a Search button (o) at the top which opens a dialog that makes it easy to find a
variable if you know part of its name. For example, say we we're looking for a variable named instance;

we could click the Search button (e) and type "stan" (without the double quotes):
{)"' Search Variable = IEI

Select vanable(s) to find

sta n|

"gnome-games-2.26.2/libgames-support/games-conf.c"instance

|@:| [QK l ’ Cancel]

This shows us there is only one matching variable (which happens to be a file static in the shared library).
(If you don’t see it then something is wrong in the debug configuration that is preventing the unstripped
shared library from being found.) When we select it and click OK (or double-click it) then the variable is

page 47 of 99

shown in the Variables view:

(9= Variables &2 9 Breakpoints| mo Registers Y Expressions ¥ =08
Marme Yalue Type Count|5ize| Location |Access
- = Locals 2 variables
= = File Statics (non-empty] 11 of 31 files
= games-conf.c 4 variables
@ games_conf_parer 0x00029438 polnter 0 32 0:400409EC RAW
A o instance | 0x00022260(GamesConf* | 1] 321010040978 [R'W_|
+ @ signals gumt[l] 1 32 0:d00409F0 RAW
+- @ window_state_key const char[4][12] 4 384 (40035684 RAW
+ games-runtime.c 4 variables

The Search button is also available in the Registers, Expressions, Functions, Memory and Disassembly
views.
The Variables view also has a drop-down menu () which contains these commands:

e The New Variables View command creates a new, unfrozen
Variables view so that you can have more than one Variables [MNew Variable View
view at the same time.

e The Refresh command causes the values to be re-read from the
target. This could be useful for example when examining values
that are changed by hardware or another process.

e The Freeze Data command prevents the values from being updated so that you can later see the
values as they were at the time they were frozen.

The New View, Refresh and Freeze Data commands are also available in drop-down menus in other views:
Disassembly, Expressions, Memory, and Registers.

#* Refresh

=¥ Freeze Data

Later we'll see the Expressions view which is similar to the VVariables view, but can display more complex
expressions and just the expressions that you specify.

Stepping
The stepping commands are buttons in the Debug Control view:
e Step (into) (2 F5): the Step command steps to | % Debug Centre &2 . [Project Explor | # Remote Syste |~ &

the next source line or assembly instruction but B | W RS-~ pOI22RIT
into function Ca”s 4 ‘ gnometris connected (Generic - gdbserver with NEON)
— a4 [~ Active Threads
e Step Over ('=*/; F6): the Step Over command 4 & Thread 3276 #1 stopped on breakpoint #3

steps to the next source line or assembly
instruction and steps over function calls

e Step Out (I'=*|; F7): the Step Out command (& Al Threads
executes the rest of the current function and stops when it returns to its caller
Stepping can happen either by source line or assembly instruction. The Debug Control view has a toggle

Bk}ckDps :generateFallingBlock+0x54

garmneMew+0xB8

2 B254T8C

button (= ;) that you can use to switch between the two modes. By default stepping is by source line
with the “s” dark (=).

= In stepping-by-source-line mode (=), click the Step Over button (="' ; F6). The execution
advances to the next source line by executing all of the assembly instructions that are highlighted with
light green in the Disassembly view. You can see in the Variables view that the rot data member has
been set to random integer from zero to 3. (The new PC arrow position is a bit strange, but it’s up to the
compiler (in this case gcc) to tell the debugger the correct line number information.)

= Click Step Over again. The local variable cn gets a location (register R0) and a value.

= Click Step Over a third time. The color data member has been set to the value of en.

= Click Step Over three more times; until the i£ statement on line 307 is the next one to be executed.
Instead of stepping, you can click on the source line and then right-click and choose Run to Selection

from the context menu. If you step too far, just click the Continue button (¥ /) and wait until the
current block finishes falling and the next block is generated and the breakpoint is hit again.

page 48 of 99

[£] main.cpp
2514
293

294

235

l:> Click the Step (into) button (/="

The

[€] blockeps-noclutter.cpp 52] tetris.cpp =8
-
posx = COLUMNS / 2 + 1;
posy = 0;
blocknr = blocknr next == -1 ? g random int range
blocknr next;_ - - -
rot = rot,_ngxt == -1 ? g_random int_range (0, 4) :

int cn = random block colors ? g_random int_range
blocknr % NCCLOURS;

color = color mext == -1 ? cn @ color next;
blocknr next = g_random int_ range (0, tableSize):
rot_next = g_random int_range (0, 4);

color next = random block colors ? g_random int r
blocknr next % NCOLCOURS:

if (!blockOkHere (posx, posy,
return false;

blocknr, rot})

retarn true;

execution steps into the call to Blockops:

views are updated accordingly.

ER

ockops-noclutter.c &2

51 bool
52 BlockOps: :blockOkHere(int x, int v, int ik
® 53 =
4 X -= 2;
56 for (int x1 = 0; x1 < 4; ++x1)
57 {
58 for (int yv1 = 0; vl < 4; +4vy1)
5o { v

~

18 delete[] field:

€] tetris.cpp i =8

141 Disassembly &2

‘H Memory

= g + <MextInstruction>

Address
0x0001088C
0x00010830
0x000108594
Ox000108398
O0x0001083C
0x00010840
0x00010844
O0x000108A8
Ox000108AC
O0x000108B0
0x000108B4
0x000108B8
0x000108BC
Ox000108CO
O0x000108C4
0x000108C8
0x000108CC
0x000108D0

AeAnnT Nena

=) instead of Step Over.
:blockOkHere () and the Variables and Disassembly

Opcode
ASE
RSB
RSB
RSB
LDR
STR
LDR
LDR
LDR
LDR
STR

= Modules EE Outline

100

Disassembly

rZ,r3,#31
rG,r2, r0,ASR #2
r0, r0, r0, L5L #3
rl,rl,r3

3, [pc, #601 :
0, [3,%0]
rl, [r4,#0x14]
rz, [rd, #0x18]
r3, [r4,#8]
ro, [rd, #0xc]
r0, [sp, #0]
i, ré

[0x108E0] =

_ZN8BlockOpsliblockOkHereEiiii ;

sp,ril, #8
{r4, rii,pct
0Ox0001CDE4
0Ox0001CDES
0x0001CCOC

(A TaTak Rad a' ol

0x1CDFO

W1 Disassembly 2 ‘H Memory| = Modules 5= Qutline
= g+ <MextInstruction> 100
Address Opcode | Disassembly
O0x0001027C BEQ ENBElOCkD}:BDlEV+33 ; Ox102
0x00010280 BL {pct-0x4598 ; Oxbcel
0Ox00010284 MOV r, rh
Ox00010288 POP {r3-ré,rii,pct
0x0001028C DCD Ox0001CDE4
_ZNEElockOp=2llblockOkHereEiiii
% | 0x00010290 PUSH {r4-ril}:
0x00010294 ADD ril, sp, #0xlc
0x00010298 SUB Spy Spr #8
0x0001029C SUB ri, rl, 2
O0x000102A0 LDR riz, [pc, #228] : [0x1038C] =

We can see from the green hlghllghtlng in the Disassembly view that using the Step Over command in
stepping-by-source-line mode (=) will step two assembly instructions. You can try switching to stepping-

by-assembly-instruction mode (). In this mode, Step Over (= F6) will step just one assembly
instruction. Remember to switch the stepping mode back to stepping-by-source-line mode to avoid
confusion later.

Regist

ers view

In the Variables view we can see that x has the value 8 and is located in register r1.
= Right-click on x in the Variables view and choose Show in Registers.

(9= Variables | ®@ Breakpoints | m Registers &3 Y Expressions| 47 ¥ = O
Name Display Name Value Size| Access
= B Core

0x0005F688 32 RAW

|lm_|=:am—

® 0x00000000 32 RAW
[} R3 R3 0x00000003 32 RAW
@ R4 R4 0xD005F688 32 RAW
@ RS RS 0x00000001 32 RAW
@ R6 R6 0x00000000 32 RAW
@ R7 R7 0x00032890 32 R'W
@ R8 RS OxBEES53B4 32 R'W
@ R9 R9 0x00000000 32 R/W
@ R10 R10 OxBEES5324 32 R'W
@ Rl1 R11 0xBEE852C4 32 R/W
@ R12 R12 Ox01BCFCSE 32 R/W
@ SP SP OxBEES52B0 32 R'W
@ LR LR 0x000108C0 32 RAW
@ PC PC 0x00010290 32 R/W
@ CPSR CPSR 0x60000010 32 RAW
= VFP
(= NEON

Sure enough, r1 has the value 8.
= Select the 0x00000008 and change the value of r1 to 9. This change won't hurt the game.
=> Look back at x in the Variables view; the new value is shown.

page 49 of 99

5]

4

= While looking at the Registers view, step the application a few times. You can see the register
values changing and the changed values highlighted in yellow. You can see the changes in the
Variables view as well.

You can select one or more registers (the whole row, not just the value) and right-click to change the display
format. You can expand the CPSR register and see and change the individual fields. Changing the CPSR
could have bad effects on the application, so it’s probably not a good idea to change them just now. The
ARM core in the target has hardware floating point registers that are shown inside the VFP and NEON
folders. Since Gnometris doesn’t do much floating point we won’t do any more with them, but feel free to
have a look.

When you have a register selected you can right-click on it to get a context menu with Show Memory
Pointed to by register, Show Disassembly Pointed to by register and Send to items. The Show
Memory/Disassembly Pointed to by register commands display the memory starting at the address in the
selected register in a Memory or Disassembly view. Like the Variables and Expressions views, the Send
to submenu has commands that add the selected registers to an existing or new Expressions view.

Also like the Variables and Expressions views, you can use a context menu by right-clicking on the column
headings to choose which columns are displayed.

As mentioned earlier, the Registers view has a Search (»f') button for finding registers, and a drop-down
menu () with Refresh, Freeze Data and New Registers View commands like the Variables and
Expressions views do.

Debug Control view

The Debug Control view shows the connected debug configurations and possibly some disconnected ones.
In our case there is just one interesting configuration, the gnometris configuration that we created earlier.
If you remove a debug configuration from the Debug Control view, you can get it back either by going to
the Debug Configurations dialog or by using Add Configuration (without connecting)... in the drop-down

menu () of the Debug Control view.

Call Stack

At the first level underneath the debug configuration are the threads; Gnometris has just one. Under the
thread are the frames of the call stack which represent the executing functions. The currently executing
function is listed first followed by its caller then its caller's caller and so on.

The current configuration, thread and function frame are highlighted in green. It is possible to change the
debugger's "focus" to a different configuration, thread or function frame by clicking on it.
= Click on the BlockOps: : generateFallingBlock () frame. The source and Disassembly views
update to show where execution will resume when control returns to the selected frame. The Variables
view updates to show the local variables of the selected frame. The values in the Expressions and
Registers views also change to show the value they will have when control returns to the selected frame.

If there are no symbols loaded for a particular level in the call stack then the debugger will not be able to
show the function name or the caller — this is why the last level is just an address. Later we’ll see how we
can load the symbols for a specific shared library.

We can use the Step Out command to run the application until the current top frame,
BlockOps: :blockOkHere (), returns to its caller

page 50 of 99

= Click the Step Out button (\=*/ ; F7); the application runs until BLockops: :blockOkHere () returns
{0 BlockOps: :generateFallingBlock ().

l.¢] main.cpp L blockops-noclutter.cpp 22 L] tetris.cpp = O |14} Disassembly 2 “H Memory| = Modules 5= Outline| El Console ¥ ¥ =8
302 blocknr next = g_random int range (0, tableSize): - ﬁ_[En] - 100
3 rot next = g random int range (0, 4): =
color_next = random block colors ? g_random int_rar Oxlf;ljd;.el;%SBO Epcods [LJ]I;;ssembl)f 70, (04, 20%c] 1
blocknr next % NCOLOURS: 0x00010884 TR 0, [sp, 301
. . 0x000108BE MOV ro, ré
if (!blockCkHere (posx, posy, blocknr, rot)) 0x000108BC BL ZNEBlockOpsllblockOkHereEiiii
return false; % | oxo00108C0 SUB =p, ri1, 38
0x000108C4 POP {r4,r11,pct
310 return true; Ox000108CE DCD 0x0001CDE4
®311% 0Ox000108CC DCD 0x0001CDES
312 = 0x000108D0 DCD 0x0001CCOC
13woid 0x000108D4 DCD 0x0001CDEC =
514 BlockOps: :emptyField(int filled lines, int £ill prob) 0x000108D8 DCD 0x0001CESS
315 ¢ B - 0x000108DC DCD 0x92492493
int blank; 0x000108E0 DCD 0x0001CDFO
_ZNE8BlockOpslOemptyFieldEii
for (int v = 0; v < LINES; ++y) 0Ox000108E4 PUSH {r4-rill, 1ir}
0Ox000108ES ADD ril,sp, #0x20

319 { oot i e
The BlockOps: :blockOkHere () frame is gone from the call stack. Since the return value from a function is

in register RO, we can use the Registers view to see that BlockOps: :blockOkHere () has returned a value of
true (1) which is also the value that BlockOps: : generateFallingBlock () IS going to return.

You can step out of more than one frame by right-clicking on the frame you want to step out to and choosing
Step Out to This Frame.

Play the game

= Click on the Continue button (|¥)).
This lets the game run until it hits another breakpoint (or quits). The blocks will start falling. Play the game
for a bit. You can move the falling block left or right using the arrow keys. The down-arrow key will make
the block drop quickly. The up-arrow key causes the block to rotate and when you press it the game will hit
the breakpoint we set on BlockOps: : rotateBlock ().

Let's disable the two breakpoints so we can play without interruption for a bit. We need the target to be
stopped to change the breakpoints.
=> Stop the game. There are three ways to do this (which may have already happened)
1. Type up-arrow; this will cause the game to stop at the BlockOps: : rotateBlock () breakpoint.
2. Wait until the block stops falling; this will cause the game to begin to generate a new block and
stop at the BlockOps: :generateFallingBlock () breakpoint.

3. Click the Interrupt button ('““) in the Debug Control view.

= Click the Skip All button () in the Breakpoints view. Alternatively, you could disable both
breakpoints by unchecking them individually. You can’t skip or disable the debugger internal
breakpoints.

= Click on the Continue button (¥) to continue the game.

Play the game until you're bored and want to continue debugging.

=> Stop the game by pressing the Interrupt button (:““) in the Debug Control view. This will stop the
game. Since Gnometris spends most of its time sleeping, you will probably stop it in the C library
(1ibc.so.6).

=> Reenable the breakpoint on Biockops: : rotateBlock () and disable the breakpoint on

BlockOps: :generateFallingBlock ().

= Click on the Continue button (¥) to continue the game.
= If your game has ended ("Game Over"), choose Game > New Game (Ctrl+N) in the Gnometris
window to start a new one.

page 51 of 99

=> When a block is falling, type up-arrow to the game so that it stops at the BlockOps: : rotateBlock ()
breakpoint.

Gaming the game
Let's give ourselves some points so that we can impress our non-debugging friends.
= Click on the Tetris: :keyPressHandler () frame in the call stack. This frame has a local variable,

t, that is a pointer to the C++ object that represents the current game. Find t->scoreFrame->score iNn
the Variables view

(%)= Variables i 9% Breakpoints | 01 Registers| 3 Expressions ¢ 7 =0
MName Value Type Count|Size| Location |Access

T ™ I N N | -

@ keyval 65362 int 32 0xBESFDE4C R/W

@ res Unavailable bool 8 000000000 R/W

@ widget Unavailable GtkWidget® 1 32 RO
@ event Unavailable GdkEvent™ 1 32 RO

=@t 0x00037800 Tetris™ 1 32 OxBEBFD848 R/W

@ w 0x00058800 GtkWidget* 1 32 0x00037800 R/W

+ @ themelist 0x00000000 GList* 1 32 0x00037804 RAW
+ @ bgPixmap "/root/.loca.. char* 1 32 0400037808 R/W |
+ @ defaultPixmap "/writeable/.. char* 1 32 0x0003780C RAW |

@ themeno 0 gint 32 0x00037810 R/AW

+ @ field O0x0005F68E Field® 1 32 000037814 R/W

+ @ preview Ox0005D7TE Preview™ 1 32 000037818 R/W

= @ scoreFrame 0x000861A8 ScoreFrame™ 1 32 0<0003781C R/W

@ w 0x000352R0 GtkWidget* 1 32 0x000861A8 R/W

H @ scorew 0x000680A0 GtkWidget* 1 32 0x000861AC RAW

+ @ linesw 0x00068140 GtkWidget™ 1 32 0x000861B0 R/W

+H @ levelw 0x00068200 GtkWidget* 1 32 0:000861B4 R/W

+ @ scorelabel 000068020 GtkWidget™ 1 32 0x000861B8 R/W

+ @ linesLabel 0x00068120 GtkWidget* 1 32 0x000861BC R/W

+ @ levellabel 0x00065220 GtkWidget* 1 32 0x000861C0 R/AW

+ @ hbScore Ox0002RT60 GtkWidget™ 1 32 0«000861C4 R/W

+- @ hblines 0x0002A760 GtkWidget* 1 32 0:000861C8 R/W

+ @ hblevel 0x0002AT60 GtkWidget* 1 32 0«000861CC R/W

H @ vb 0x00000025 GtkWidget* 1 32 000086100 R/W

= @ b " 1" char[20] 20 160 0x000861D4 R/AW

@ level 1int 32 0x000861E8 R/W

@ score 0 int 32 0x000861EC R/W

@ lines a int 32 0:000861F0 R/W

@ startinglLevel 1 int 32 0x000861F4 R/AW

+ @ high_scores 0x00085888 HighScores™ 1 32 000037820 R/W

@ confMotifylD 108 gulong 32 0x00037824 R/W

@ paused false ™ bool & 0x00037828 R/W

@ timeoutld 16 int 32 0x0003782C R/W

= Click on the score value and type a new value. The new score will not show up on the Gnometris
display immediately. It will be displayed the next time the score is redrawn. (The changes to the
Gnometris code mentioned earlier cause the score to be redrawn every time a block moves down.)

Expressions view

The Variables view can get a bit crowded with variables that we're not interested in. We can use the

Expressions view to display just the interesting expressions.
= In the Expressions view enter the expression t->scoreFrame->score. There are a couple ways to
do this. You can select score (the whole row) in the Variables view; then right-click and choose Send
to > Expressions View. Alternately you can click where it says then type the

expression (or you can click the Add New Expression button () to move the insertion point to the
same place).

1= Variables | ®¢ Breakpoints | s Registers |22 Expressions £ 5 % 4~ —0O
MName Value Type Count|Size| Location |Access
@ t-»scoreFrame->score 12345 int 32 0x000861EC R/W »
@

You can use registers in the expressions by using names like $x4. You can also create expressions by
dragging a selection from other views such as source, Variables, Registers or Memory and dropping it into
the Expressions view.

Like the Variables view, you can select one or more expressions and right-click on them to get a context
menu that will let you change the format that the value is displayed in. Also like the Variables view, you

page 52 of 99

can also use Show in Registers, Show in Memory and Show Dereference in Memory commands using
context menu.

Also like the Variables view, you can choose which columns are displayed in the Expressions view by

right-clicking in the column headers. The Expressions view has a Search () button, and a drop-down
menu () with Refresh, Freeze Data and New Expressions View commands like the Variables,
Registers, Disassembly and Memory views do.

= Click on the Continue button (\¥) to continue the game.
The new score is displayed in the Gnometris window as soon as the block moves down one step.

=> Type up-arrow to the game so that it stops at the Blockops: : rotateBlock () breakpoint again.
Since BlockOps: : rotateBlock () does not have a variable named t in scope the value expression cannot
be shown.

You can select expression rows and click the Remove Selected Expressions (®) button to remove them or
you can click the Remove All Expressions (") button to remove all of the expressions.

Expression Inspector view
There is a temporary version of Expressions view called the Expression Inspector view. You can use the
Expression Inspector view from the source views while debugging to quickly inspect some values.

= Select an expression in the source view, for example posx and right-click and choose Inspect from
the context menu.
¢ main.cpp l¢] blockops-noclutter.cpp &2 =

if (rotateCCwW)

1
}

else

if (--r < @) r = 3;

if (++r »>= 4) r = 8;

}
if (blockOkHere ([, posy, blocknr, r))

7 Expression Inspector EI@

<.=:'(> Linked: gnometris

m

Mame Yalue Type Count|5ize| Location |Access
@ posx 3 int 32 0:0006051C RAW

To- OUoT

166 BlockOps: :moveBlockDown ()

You can do most of the same operations in the Expression Inspector view that you can do to an
Expressions view including adding more expressions, changing the columns and formatting, etc. If you
want to save some expressions that you've added to an Inspector view, select them and right-click and
choose Send to which will add them to an existing or new Expressions view.

Memory view

The Memory view displays memory in various formats. It has Address and Size fields. The Address field
is an expression for the starting address to be displayed and Size is an expression for the number of bytes to
be displayed.

page 53 of 99

= Put $sp in the Address field of the Memory view and put 128 in the Size field. Now we're viewing
the top to the stack. (The stack grows toward lower addresses.)

1%} Disassembly | {5 Memary 53 £ Modules| o= Outline o = Xn ' ¢ ~ =0
Be o B¢ w 129
OxBESFDAFS 0x40892250 O0x0000C750 OxO000861AE Ox00037800 B" . EF a X
OxBESFDBO8 OxBESFDB1C OxO0000F100 Ox00000007 Ox00037800 b4
O0xBESFDB18 OxBEESFDB34 O0x0000F1DC OxO0001DA30 Ox00037200 4 4] X
OxBESFDB28 0Ox00000001 OxO00000001 OxBEBFDB44 Ox0000F41C C
O0xBESFDB38 Ox0000F394 Ox000BF6AE Ox407FCFeC 0Ox40TFCFS0 1.0@..0@e
OxBESFDB48 0x40892250 0Ox40T7FCZBC 0Ox40892250 Ox000BFeAB B" . @. .0 @E"™.8&
OxBESFDBSS O0x00000000 Ox407FCATC OxO0O001E120 0Ox000002B4 |.0@
OxBESBFDEGE Ox000BCBED Ox407FCFeC OxBEBFDBEE 0x00000239C 1.0@

The memory address of the first byte in each row is displayed in the left margin. The width of the view
determines how many bytes are displayed on each row.

You can set the Address field by dragging a selection from another view such as source, Variables or

Expressions and dropping it into a Memory view.
= Use the call stack and the Variables view to find the t->defaultpixmap member of the Local
variables in the Tetris: :keyPressHandler () frame. Select the member's row in the Variables view,
right-click and choose Show Dereference in Memory and change the Memory view’s Size field to 128.
Now we are viewing the string (char[]) data.
1%} Disassembly | 5 Memary 53 = Modules| 5= Outline o * Xn ' ¢ ¥~ =0
fy = g + t->defaultPixmap 128

0x00036F68 0x2F OxT77 0x72 0Ox69 0xT74 0Ox65 0Ox6l1 0Ox6&2 Ewriteab
0x00036FT0 0x6C 0x65 0x2F 0x70 0Ox6B 0x67 0x64 0Ox61 le/pkgda
O0x00036FT8 O0x74 0x6l Ox2F 0x67 Ox6E O0=x6F Ox6D O=x&5 ta/gnaone
0x00036F80 0x74 0x72 0Ox69 O0x73 Ox2F 0x70 Ox69 OxT8 tris/pix
Ox00036FE88 Ox6D 0Ox61 OxT0 O0x73 Ox2ZF 0x67 Ox6E 0Ox6F | maps/gno
0x00036F30 Ox6D Ox65 0xT74 0x72 O0x69 O0xT73 Ox2E O0xT73 | metris.s
0x00036F98 0x76 0x67 0x00 Ox00 Ox00 Ox00 O0x00 Ox00 | wg

The memory values are displayed both numerically and as characters; either can be changed.
= It won't hurt the game to change the beginning of this string. Select the first / character and type a

few characters (for example "hello™) to see how it works. Note that the changed values also show in the
Variables view.

You can use the Search button (¥) to open a search dialog like the Variables Expressions, Registers and
Disassembly views that makes it easy to see the memory holding a global variable if you know part of its
name.

 Search Symbols = @
Search String
size]

Case Sensitive

Search In
Code Symbols (and functions)
| Data Symbols

BLOCK_SIZE
offzetTSize
sizeTable
sizeTSize
tableSize

[OK l | Cancel |

You can type the first few characters (or none) into the Address field ~ Disessembly [T Memory £ | = Modules | ¢

and then type Ctrl+Space to use Content Assist to see a list of - AL —
variables whose names being with those characters which you can then E'LDSEEE
pick from =

page 54 of 99

INFO: In Windows, if foreign language support is enabled, the Ctrl+Space key combination is used to
change between languages inside a text box (for example English to Chinese). You can change the key
combination to something else in Eclipse by going to Window > Preferences > General > Keys > Content
Assist to change the key combination to something else.

The addresses (and sizes) you use are kept in a history list. You can use the Back (=) and Forward (=)
buttons to walk through the history list or use the History (é;‘-) drop-down menu to choose a recent address
value. You can use the Home/Clear Data (f’fﬁ) button to empty the Address field and show no data, which
is the default. The Memory view has a drop-down menu (™) that has a Clear History command that

clears the history of the Address field. The Disassembly view also has Address and Size fields and a
history list.

If you haven't already used them, you can try using the Show in Memory, Show Memory Pointed to by
register commands from the context menus of the Variables, Expressions and Registers views to examine
data in a Memory view.

You can also select an expression in a source view, right-click and choose Show in Memory or Show
Dereference in Memory from the context menu.

The Memory view has drop-down menus to change the number of bytes in each value (width) and the
format of the numeric values.
Ty -
Birary

Boolean

Character
b Float

Lbye

2 bytes Octal k
m Signed Dedmal

& bytes IUnsigned Decimal

It won't hurt anything if you try changing the width and the format to see what happens. The Memory view
has a button (1 22)) to toggle the display of the characters on and off. You can try it, too.

If you hover the mouse pointer over a value in the Memory view a tooltip will show you the value in other
formats.

OXxBEEFDI&0 z@"

0x0 Signed Decimal: -1097868960

0z4 Unsigned Decimal: 3197098336

0x4 Octal: 027643754540

0xd Binary: 0b10111110100011111101100101100000

0x4 Float: -0.2809553

0xq Character: " UBESFD960"

0xdq Boolean: true

You can toggle these tooltips off or on with the Show Tooltips command in the Memory view’s drop-down
menu ().

If the Memory view is displaying instruction memory where a breakpoint is set, the breakpoint symbol will
be shown (®). You can also right-click and toggle, enable and disable breakpoints on memory locations
(these are execution breakpoints though, not data watchpoints).

The Memory view's drop-down menu (=) has Import Memory and Export Memory command that you
can use to read and write a region of memory to a file in various formats. The Memory view's drop-down

page 55 of 99

menu also has Refresh, Freeze Data and New Memory View commands like the VVariables, Expressions,
Registers and Disassembly views do.

Commands and History views

You have probably noticed that the debugging actions that you've been doing have been recorded in the
Commands view along with responses. The commands are also recorded in the History view, without the
responses. The debugger can be controlled by typing commands into the Command field of the
Commands view and pressing Return or clicking the Submit button.

While you are typing a command you can get help with what you have typed so far by pressing Ctrl+Space
to activate Content Assist
= Type set st into the Command field and then type Ctrl+Space. This activates the Content Assist
which shows the possible completions and help for each. You can use the mouse and arrow keys to
choose which alternative you want:

Command: set st] |Submit |
set step-mode Isetstep-mode
set stop-on-solib-events Thiz command controls the defzult behavior of the step znd steps commands. -

Syntax
set step-mode { step-over | stoplstep-until-source }

m

Where:

Step-over — If the instruction is a function call then then the
debugger performs a step—over. Otherwise, it stopa. This is the default.

Stop — The debugger stops when execution reaches an address with
no source.

step—until-source — The debugger performs steps until it reaches source. To
speed up the execution, the debugger might use abstract interpretation and break

In this case, we don't want any of them so just press Esc to dismiss the assist windows.

You can type the help command to find out about all the DS-5 Debugger commands. Pressing the F1 key
(or Shift+F1 on Linux) will also display Help for whichever view you are using at the time.

Let's "improve" our Gnometris playing further, this time using the debugger command line.
=> Reenable the breakpoint on BlockOps: : generateFallingBlock () and run the game until it stops
there.
This function uses a member, blocknr, that determines the shape the new block. I like the straight blocks
which Gnometris represents by the value 5

=> Execute the command set var blocknr = 5 (if you like the two-by-two blocks better you can use
the value 6 instead).

= Click on the Continue button (¥) to continue the game. Now the new block has the shape you
forced.

You can re-execute the last command by typing Return or clicking the Submit button. You can also use up-
arrow and down-arrow to easily access previous commands.

You can also drag selections from the other views such as source, Variables, Memory, Project Explorer
and even Windows Explorer to the Command field to construct commands.

The Commands view has buttons that let you save, clear, and lock the scrolling of the view. You can use
the Show History button (%) to open the History view. You can use the Run Script drop-down menu (
"% 7) to run your recent scripts, favorite scripts or any scripts.

You can select lines of the Commands or History views and right-click on them to get a context menu
containing Save selected lines as a script... and Execute selected lines commands.

The History view has an Export button (=) that creates a script from (exports) the selected commands. It
also has buttons that clear the view (=) and lock the scrolling () of the view.

page 56 of 99

Scripts view

You can collect debugger commands into script files and easily re-execute them from the Scripts view.
= Select the set var blocknr = 5command that you executed above in either the Commands view

or the History view.

= Right-click on the selected line and choose Save selected lines as a script...

=> A file save dialog will open. Save the file on the desktop with the name favorite-block. And choose
Yes to the dialog asking if you want to save the script in the Scripts view. (If you choose No, the script

file is still created on disk and you can use the

Import Script button (£23) of the Scripts view to

add it.)

i Commands i

EX ds;

History | %) Scripts £2 = F S Ry~ O

You can run a script in the Scripts view by double clicking it or by selecting it and clicking the Execute
button (E:f?) at the top of the view. You can also run scripts using the Run Script drop-down menu (=" ™)

in the Commands view.

You can easily open a script to edit it by selecting it and clicking the Edit button (&”). You can create a

new empty script and open it for editing by clicking the New script button (*). If you already have a script
file, you can add it to the Scripts view by clicking the Import Script button (1) and finding it. You can
delete scripts by selecting them and clicking the Delete button (#).

You can also create scripts by pasting into the Scripts view or dragging selections into it from other views

such as History, Commands and source.

Breakpoint scripts

We can do complex debugging by executing a
script every time a breakpoint is hit. Let's
automate forcing our favorite block.
= Wait until the game hits a breakpoint, or
type up-arrow to encourage it to hit a
breakpoint.
= Right-click on the breakpoint on
BlockOps: :generateFallingBlock () in the
Breakpoints view and choose the
Properties... context menu item. Use the
drop-down menu to choose the favorite-
block.ds script file (on the desktop,
remember?).
=> Check Continue Execution and click the
OK button.

Now whenever this breakpoint is hit, DS-5 will
execute the favorite-block script and then continue
execution. You can check Silent if you want the
breakpoint to not display messages in the
Commands view when it is hit.

“o Breakpoint Properties

Description:

Host File Location:
Compiled File Location:
Type:

State:

o =]

blockops-noclutter.cpp:297 @ BlockOps::generateFallingBlock+0x54 0x0001
C\Users\sdouglas\Documents\DS-5 Werkspace\gnometris\gnome-games
C:/Users/sdouglas/Documents/D5-5 Workspace/gnometris/gnome-games
Source Level Software Breakpoint [ARM]

Active

Address:

7| @ BlockOps:generateFallingBlock+0x54 0x000107B8 [#31]

Stop Condition:

Ignore Count:

Hardware Virtualization:

Break on Virtual Machine ID:

On break, run script:

0

Unsupported

Ci\Users\Demo'\Desktop\favorite-block.ds = File System... | | Workspace...
| Continue Execution
Silent
Break on Selected Threads or Cores
Thread 3276 #1 stopped
'/:?l oK l | Cancel

= Disable the breakpoint on Blockops: : rotateBlock () (the other one) so that it won't stop the game.
= Click on the Continue button (¥) to continue the game. Now see how well you can play!

page 57 of 99

Show off your skills

You may have noticed that Gnometris's preview pane is still showing the next block that was chosen before
our breakpoint script forced it.
= Prove that you understand what's going on by using the DS-5 Debugger to make the Gnometris
preview pane also show your favorite block. Maybe you want to force the block to be your favorite
color, too.

Advanced Breakpoints
There are some additional features available in the Breakpoint Properties dialog.

You can set a Stop Condition expression for a breakpoint. Every time the application reaches the
breakpoint the condition expression is evaluated. If the expression's value is zero (false) the application is
resumed without performing any other breakpoint actions; the ignore count is not updated and any
breakpoint script is not executed. If the expression’s value is non-zero (true) the breakpoint is processed
normally, that is the same as if there were no condition expression.
= Enable the breakpoint on Blockops: : rotateBlock () and in its
Breakpoint Properties set the Stop Condition to rot==2. This means
the breakpoint will be ignored except for one of the four possible fgnore Count 0
rotations. (Some of the rotations look the same as other rotations for
some shapes.)

= Click on the Continue button (¥) to continue the game.

=> Now type up-arrow repeatedly to rotate the block and see that the debugger stops only every fourth
time.

Stop Condition: rot == 2|

You can also set an Ignore Count for a breakpoint. This causes the breakpoint to be ignored a given
number of executions after which the breakpoint will begin stopping each time.

You can also access the Breakpoint Properties dialog by right-clicking on a breakpoint symbol (@) in a
source view and choosing DS-5 Breakpoints > Breakpoint Properties... or right-clicking on a line with a
breakpoint symbol (@) in Disassembly view and choosing the Breakpoint Properties... menu item.

You find out the purpose of a debugger internal breakpoint by right-clicking on it in the Breakpoints view
and choosing the Properties... menu item.

More features in Source and Disassembly views

You can hover the mouse over the tab of a source view (e.g. blockops-noclutter.cpp) and a tooltip will
show you the path to the file within the Project Explorer view.

In a source view you can set the insertion point on a line of code and then right-click to get an enormous
context menu. Most of the context menu items are for use when writing code but the following are used
while debugging with DS-5:

{ Inspect

1E (447 Show in Memory
Show Dereference in Memory
if (blockOk Show in Disassembly N
{ Send To L »
putBlaoc .
_ Set PC to Selection
rot = r
putBloc Run to Selection

e You can use the Show in Disassembly command to show the assembly instructions that correspond
to the line with the insertion point in the Disassembly view. This also sets the Address field of the
Disassembly view.

e Like in other views, you can use the Send to submenu to add the currently selected text to an
existing or new Expressions view.

page 58 of 99

e You can use the Set PC to Selection command to set the PC register to the first assembly instruction
for the line with the insertion point. This can be can be very handy for skipping some code or re-
executing a bit of code that just did something unexpected—Dbut you need to know what you are
doing.

e You can use the Run to Selection command to place a temporary breakpoint on the line with the
insertion point and then run until it is hit (or another breakpoint is hit).

e You can also use these commands which were discussed earlier: Inspect, Show in Memory, Show
Dereference in Memory.

In addition to double-clicking on the left margin of a source line to toggle a breakpoint, which we've seen
earlier, you can toggle, enable and disable breakpoints and access their properties by right-clicking on the
left margin of a source line

L€ main.cpp .t| blockeps-noclutter.cpp &2 lg| tetris.cpp

int r = rot;

R ST
Teggle Breakpoint
Enable Breakpoint
Breakpoint Properties...

Breakpoint Types 3

DS-5 Breakpoints » | ® Toggle Breakpoint

Default Breakpoint Type 4 Teggle Hardware Breakpoint
Go to Annotation Ctrl+1 Resolve Breakpoint

Disable Breakpoint

Add Bookmark... b

Add Task...

©g Breakpoint Properties...

In the source views when you hover the mouse pointer over an identifier, a tooltip will be displayed showing
the value of a variable, the documentation for a library function or the source code of the declaration of the
identifier. When you put the insertion point in a function, the left margin is highlighted to show the extent
of the function (shown in the picture above). When you put the insertion point in an identifier, for example
a function or variable name, all occurrences of the same identifier in the current file are highlighted. You
can then right-click and choose Find Declaration (or type F3) to go to the definition or declaration of the
identifier.

Like the Memory view, the Disassembly view has an Address (on the left) and Size (on the right) fields.
You can type an expression (for example $x0 or 0xc100) or a symbol (for example main) in the Address
field to disassemble around a specified location. A hollow arrow (=)indicates the line specified in the
Address field:

11 Disassembly &2 ‘H Memory| = Madules 5= Qutline ¢ ¥ = 08
fr < g - main 100
Address Opcode | Disassembly -
0x0000C13C CHMP r3, 70
0x0000C140 POPEQ ir3, pct
0x0000C144 BLX r3
Ox0000C148 POFP ir3, pcl
0x0000C14C DCD 0x0001CO08
Ox0000C150 DCD Ox00000000
main
~ | 0x0000C154 PUSH {rd,rh,r11,1r}
0x0000C158 ADD rii, sp, #0xc
0x0000C15C 5UB S0y 5Dy #0248
0x0000C1e0 STR ro, [r11, #-0x50]
0x0000C164 STR 1, [r11,#-0x54]
0x0000C1es MOV r3, 70 E
0x0000C1EC STR »3, [r11,#-0x10]

The green highlighting shows the instructions that belong to the same source line.

Like the Memory view, you can type the first few characters (or none) into the Address field and then type
Ctrl+Space to use Content Assist to see a list of code symbols (functions) whose names being with those

characters which you can then pick from. Also like the Memory view, the Disassembly view has a Search
page 59 of 99

button (4) to open a search dialog that makes it easy to see the instructions of a function if you know part
of its name.

The Size field, which defaults to 100, specifies how many instructions before and after the address should be

scrollable. You can use the Home (f’fﬁ) button to set the Address field to the default <Next Instruction>
which centers the Disassembly view around the PC. You can use the Back (<) and Forward (=) buttons

to walk through the address history or use the History (En"-) drop-down menu to choose a recent value.

In the Disassembly view you can right-click on an assembly instruction to get a context menu including the
breakpoint commands and the following:

114 Disassembly & ‘E Memory| £ Modules EE Qutline ¢ ¥ =08
ti & g * main 100
Address Opcode | Disassembly -
0x0000C1e0 S5TR r0, [r11,#-0r50]
0x0000C164 STR ri, [z11,#-0r54]
0x0000C168 MOV r3, 70
Bloxoooogieclrenraotalere o2 i.77,#-0x10] |
0x0000| [Copy Ctl+C },#356] : [0xC2DC] = Ox125B4
0x0000 [z Paste Csy [¥3Pc 7 OxbEbE
0x0000| -
00000 Select All Ctrl+A
0x0000 Ix148 ; OxclcE
0x0000| Run to Selection Ixa8c ; Oxbéed
0x0000) .
00000 Set PC to Selection l1,4-0x14]
0x0000) Show in Source |, #0x48
0x0000 Show in Registers 1,74 -
0x0000| b1, %4
0x0000/ @ Toggle Breakpoint Pl, %4
0x0000 1], 34
0x0000) Enable Breakpoint Pl 74
4
00000 Disable Breakpoint fews
0x0000 I N, #4
oxoooo| # Remove Breakpoint b1, #4
0x0000 Resolve Breakpoint 1,74
0x0000 i, %4

Breakpoint Properties 1, 3a

e The Run to Selection and Set PC to Selection commands do the same thing as they do in source
views.
e You can use the Show in Source command to select the source code line that corresponds with the
assembly instruction.
e You can use the Show in Registers command to highlight the registers accessed by an assembly
instruction in the Registers view.
When you hover the mouse pointer over an assembly instruction in a Disassembly view, a tooltip will
display if that address is pointed to by the PC, LR, or has a breakpoint.

The Disassembly view has a drop-down menu (=) that contains an Instruction Set submenu that allows
you to force the instructions to be disassembled as ARM or Thumb. Like the Memory view, the
Disassembly view's drop-down menu also has a Clear History command that clears the history of the
Address field.

The Disassembly view's drop-down menu (™) also has Refresh, Freeze Data and New Disassembly View
commands like the Variables, Expressions, Registers and Memory views do.

Shared Libraries and Modules view

The DS-5 Debugger can debug shared libraries (. so files) in pretty much the same way as applications.
You can step into and out functions in a shared library just as if they were in the main application and the
call stack will show which frames are from which shared libraries.

Gnometris uses a shared library named 1ibgames-support.so. If you want to try out the shared library

support, you can place a breakpoint on the function games_scores _add score, IN libgames-
support/games-scores.c, iN the usual ways. You can see information about the shared libraries that are in

page 60 of 99

use in the Modules view:
1} Disassembly [{F Memory | £ Modules 52 . 5 Qutline & =0
MNarme Symbols Address Type Haost File
1| fwriteable/gnometris/stripped/libgames-support.so loaded 0x40027000 shared library Ci/Users/sdouglas/Documents/D5-5 Works »

|| fust/lib/libgtk-x11-2.0.50.0
&l Fusr/lib/libgic-2.0.50.0

|| Mib/libstdc+ +.50.6

|z /lib/libm.so6

|z Alib/libgee_ssol

no symbols 0x40041000 shared library
no symbols 0x40331000 shared library
no symbols 0x4038F000 shared library
no symbols 0x4046C000 shared library
no symbols 0x404E3000 shared library

Like the Variables, Expressions and Registers views, you can control which columns of the Modules view
are displayed by right-clicking on the column headings.

If you set a breakpoint in shared library code before the shared library has been loaded by the application
then the breakpoint will be kept as "pending”. When the library is loaded the debugger will search for the
shared library's debug information according to the solib-search-path Which can be set in the debug
configuration or using the command line. When the debug information has been loaded the pending
breakpoint will be resolved.

Because Gnometris loads 1ibgames-support.so before main is reached you will not see breakpoints in
libgames-support.so in the pending state unless you change the debug configuration to use Connect only
or Debug from entry point.

You can also right-click on an entry in the Modules view to get a context menu with commands for loading
and discarding symbols and displaying the module in a Memory or Disassembly view.
= Right-click the entry for the C library, /1ib/1ibe.so.6 and choose Add Symbol File... then
navigate t0 My Documents\DS-5 Workspace\distribution\filesystem\armv5t mtx\1lib and
choose 1ibc.so.6

101

19} Disassembly |“5 Memory | = Modules 53 5% Qutline

Mame Symbuols Address Type

&l fwriteable/gnometris/stripped/libgames-support.se loaded 0x40027000 shared library C:/Users/sdougl
B g 11200 081000t e

[& fusr/lib/libgio-2.0.50.0 Copy Cr+C 19331000 shared library

|| MMib/libstdc++.50.6 Select All Ctlep |038F000 shared library

& Mib/libm.so.6 046C000 shared library

|| Mib/libgec_s.sol Load Symbols 04E3000 shared library

& ib/libc.so 6 Add Symbol File... 04FCO00 shared library

|| fusr/lib/libgdk_pixbuf-2.0.5¢ Discard Symbols Le 0641000 shared library

|| fusr/lib/libgdk-:11-2.0.50.0 065C000 shared library

|| fusr/lib/libpangocaire-1.0.5¢ Show in Memary 06DD000 shared library

|| fusr/lib/libcairo.so.2 Show in Disassembly 06EDOOD shared library

&l fusr/lib/libpange-1.0.50.0
This copy of 1ibc.so. 6 Was not built with debug info, and the source is not in the example, but there is still
enough information to use C library symbols, for example memcpy, and the call stack will now show C
library symbol names instead of just addresses.

no symbols 0x40757000 shared library

If you wanted, you could add My Documents\DsS-5

Workspace\distribution\filesystem\armv5t mtx\1lib t0 the Paths in the Debugger pane of the debug
configuration as a Shared library search directory. Then the debugger would find the symbols for the
libraries automatically.

Change of topic

Let's change focus now from debugging to profiling and take a look at ARM Streamline. There are a few
more debugging topics that we'll come back to after Streamline, if there's enough time and interest.

page 61 of 99

ARM Streamline Workshop using Xaos on Snowball
Copyright 2010-2012 ARM Ltd. All rights reserved.

| Xaos 001 001 i3 T
B Timeline| 27 Call Paths| @ Functions | [5i Code| =T Call Graph | B Stack| & Log

Q REEL b e e TR
o
6 65z 7s 7.55 -L 5,5; o4 _ .;

T W W

» CPUActivity % [m] 4
B Duser
= Esystem

Bl [M]1206
998.71 MHz avg.

‘
[1206 -0 16 avg
\ | GHz avg.

9] B 52165 MHz avg. | fkernel]

do_3d32

» Cache I IPELD B [idle] B
M Dtz gependent stal I VisualAnnotateImage [

| | print [J
1 N B 214w avg

Channel0 Power % [ME

O Average =——— h—
“w

xaos #23816

B oy i g

" X Haos

File Edit Fractal Calculation Filters Ul Misc Help
Uelegue o daud weesion J.5

|| 8s[100ms])
T G e 0 O) G | () G

([| i . - .-

¥ [xaos #23816]
[xz0s #23816]

[xaos #23818]
[xz0s #23817]

P [iosd #1356]

P [gatord £23788]

core OB 10

ARM® Streamline™ is a graphical performance analysis tool. Combining a Linux kernel driver, target
daemon, and an Eclipse-based user interface, it transforms sampled data and system trace into reports that
present the data in both visual and statistical forms. ARM Streamline uses hardware performance counters
along with kernel metrics to provide an accurate representation of system resource use.

This part of the workshop demonstrates the use and features of the ARM Streamline performance analyser to
inspect applications running on an ARM Linux target. The workshop details the Linux configuration and
setup required to enable application profiling. It demonstrates how use the Streamline report to analyse and
investigate application performance and power. All of the software you need, including the ARM Linux
image for the target, is included with DS-5.

page 62 of 99

Introduction to ARM Streamline

The ARM Streamline product uses sample based techniques to capture system and application data for
analysis. The data is then analyzed by the DS-5 Eclipse Streamline plug-in and presented as a report.

ARM Linux Target

Ethernet (open window
__on Xming X server) Xaos
X server < application Linux file
P Ethernet
DS-5 < »| Gator daemon system
I usB
ey e Prob Gator driver Linux
nergy rro e) (kernel module) kernel
Host
S

Linux / Windows

Snowball board

The kernel driver (called gator . ko) together with a daemon running on the target (called gatord) captures
the data and sends it over the network to the host PC for analysis. The kernel module must be built against
the Linux kernel in use on the target.

Preparation

For the purpose of this workshop we are going to use an application called Xaos. It is an interactive fractal
zoomer included as an example in DS-5.

Host Setup
DS-5 can be used on Windows and Linux hosts. If your host has not already been setup for you then you
will need to follow the instructions in the appendix on page 87
= If it’s not already started, start the Xming X server. (Refer to Starting the X server on the Host on
page 33.)

Target Setup

For the workshop you’ll be supplied with a Snowball board that already has gator running on it. The gator
driver and gator daemon are open source and are provided with DS-5. If you want to setup your own target
please see Appendix B: Snowball: Linaro Linux target setup page 94. (If you want, you can connect to the
target’s serial port t0 see the target’s console messages, but it is not necessary for this workshop. See the
Serial setup in the appendix on page 92. We will, however use the different, but confusingly similar,
Terminals view to make an ssh connection later.)

Starting Eclipse

If you have not started Eclipse for DS-5 yet, follow the steps below
= Start > All Programs > ARM DS-5 > Eclipse for DS-5 and choose a location for the workspace
where Eclipse projects will be stored. The default workspace location is fine.
= If this is the first time you've started DS-5 you will see the "Welcome to ARM DS-5" home page;

click Go to the workbench. You can get the Welcome page back if you want it later by choosing Help
> Welcome.

Installing a DS-5 License

In order to use DS-5 for this workshop you will need to have a license for DS-5 Basic Edition, either a full
or evaluation license. (A license for Professional Edition will also work.) If you don’t have a license a

dialog will open with an explanation and a button to Open License Manager.... Without a license you will
page 63 of 99

see only some of the Streamline panes and information. You can get an evaluation or full license by
opening the license manager using Help > ARM License Manager..., clicking the Obtain License... button
and following the instructions. You will need to be connected to the internet. When you receive the license
file, you can add it by using the Add License... button. After adding a license you will need to restart
Eclipse in order to fully enable Streamline (sorry).

Importing Xaos
We use the two example projects distribution and xaos.

= Look in the Project Explorer view and if distribution and xaos do not appear there, follow the
instructions for importing them in the appendix on page 87.

The build produces an application /xaos/xaos-3.5/bin/xaos in the Project Explorer view. This file will
contain debug information. The stripped subdirectory, /xaos/xaos-3.5/bin/stripped, has a copy of
xaos With the debug information removed. The project contains pre-built copies of these two files which
will be overwritten when you build the project.

Getting help for Streamline (digression)

You can press the F1 key (or Shift+F1 on Linux) at any time to get help about the current view. You can
use Help > Help Contents > ARM DS-5 Documentation > Using ARM Streamline to view the
documentation. You can access cheat sheets for various tasks using Help > Cheat Sheets > ARM ..., for
example importing the example projects. (But we won't be following those cheat sheets here.)

If you don’t have a real hardware target you can analyze some pre-captured data to use for the rest of the
workshop. If you do have a real target, skip this step and carry on with the workshop. To import a saved
report go to the section Import, Export and Save Reports on page 82. Following the import you can skip to
the section The Timeline view — a first look at the Streamline report on page 70.

Install Xaos to the target

Unlike the DS-5 Debugger, ARM Streamline does not automatically copy applications to the target or start
them. Instead, it profiles whatever is running on the target while it’s capturing data. We’ll copy Xaos onto
the target ourselves and start it “by hand”.

= If it’s not already configured, configure the RSE connection (Refer to Creating a Target Connection
in the appendix on page 90.)

Now that we've established access to the target, we'll install the xaos application by copying it from the
host;

=> Drag the Remote Systems view by its tab to a different pane from the Project Explorer view so that
you can see both views at the same time.
%5 Debug L Projec o Termi = 0] # Remote Systems
5 gnometris - = Lc<al° :
4 5 x205 & My Target
np Includes %%y Sftp Files
& ARM Elvcamllnc My Hor [}»
’ . _"‘°;":5 /23 S‘hj‘:’i:ce’.;}?
4 (& stripped % Ssh Shells
X205 E ')" Ssh Terminals

=> Copy the stripped xaos by dragging it from the bin/stripped folder in the project to the My Target

> Sftp Files > My Home folder on the target. (If the connection has Files instead of Sftp Files, then the
connection was not created correctly and you should Disconnect it, Delete it and recreate it.)

You can copy the unstripped version from the bin folder instead, but it’s bigger and the debug
information isn’t needed on the target.

page 64 of 99

= Expand the My Home folder and right-click on xaos on the target; choose Properties > Permissions
and check the three Execute boxes:

48 Remate Systems 2

< | =R
. Ef Local
4 ¥ My Target
4 %y Sftp Files
4
4 5 My Home)
5| gnometris ~ Properties for xaos = @
w1} libgames-support.so type filter text Permissions [= 4 w7
jmy meodecko
] Info o
5 ont GoTo N e Permissions
i Type Read Write Execute
[Shell Proc T - S 5 -
ser
F% Ssh Shells
i-J Sch Termi Open With 4 Group v v
v v
& Refresh Fs Others
0 hi
[Rename.. F2 RS
¥ Delete.. Delete Uz IO
= Copy Group | O
« Move...
Restore Defaults Appl
Compare With 3 | | | EBY, ‘
Replace With 3 =
':3,' l 0K] | Cancel |
Properties h Alt+Enter

Alternatively, you could set the execute bits by executing the following command in the Terminals view:
chmod +x /home/linaro/xaos
=> You should also copy splash.bmp by dragging it from the top-level xaos project folder to the My
Target > Sftp Files > My Home folder on the target.
Error! Hyperlink reference not valid.
Now we'll create a terminal connection so that we can execute commands easily on the target. You can
Collapse the Sftp Files to get them out of the way.
= In the Remote Systems view, create a Terminal by right-clicking on Ssh Terminals and choosing
Launch Terminal.
@5 Debug Control | [Project Explorer | 45 Remote System £7

& & =
- Ef Local
4 _&f My Target
) #,:"D Sftp Files & Refresh F5
: Eg Shell Proces Disconnect

% Sch Shells

%’-J e ——] Clear Password

& Launch Terminal
o l}

Properties Alt+Enter

This will open a Terminals view in Eclipse that can be used to execute commands on the target. (This is
different from, but confusingly similar to the Serial view).

page 65 of 99

| Streamline Data 2 @ | Ngh @‘ B= = O

Set the Capture Options [Sz =]
If it’s not already open, open the Streamline Data view:
= Select Window > Show View > Streamline Data.

Streamline data and reports are shown in the Streamline Data view. It will be empty, unless a previous
profiling session has been run, in which case saved captures and reports may be present in the view. You
can select any existing captures and reports and click the Delete button (#) to get rid of them. You can get
help by clicking the Show Help button (/@").

The Streamline Data view has an Address field for specifying the name or IP address of the target, a Start
Capture button (‘_f/), a Change Capture Options button (‘ﬂ) and a Counter Configuration button (‘ﬂ/).

= Click the Capture Options button (‘ﬂ): |
aEon "%~ & Capture & Analysss Options

Capture & Analysis Options

Choose the opticns for a new Streamiine session.

& Choose an ELF image...

Connection
Addeess:| 169.2540100
Capture
Sample Rate: Normal » | Buffer Mode: |Streaming v
Duration te 4! Call Stack Unwinding
Energy Capture
ARM Energy Probe v Device Aut
Tool Pats
Chanosi('V Power [V Voltage 'V Curremt Resistamces.) L B
Channel 1 Power Voltage Cuerent Resistance: m
Channel 2. Power Voltage Current Resigtamce 7 m .
Analysis
V! Process Debug Information

High Reschution Timeline

Program Images

? | oK Cancel ? Impert... Export... Save | Cancel

= Set the Address field to the IP address of the target 169.254.0.100.

e You can select Sampling Rate as Normal (1000 samples per second), Low (100 samples per
second) or None (no sampling). We’ll use Normal which is the default.

e You can set Buffer Mode to Streaming, Large, Medium or Small. In Streaming mode the
captured data is regularly streamed from the target over the network to the host PC. It may skew the
performance of any network critical applications. If Buffer Mode is Large (16MB), Medium
(4MB) or Small (LMB), the data will be captured to a buffer allocated on the target. The profile
session will be stopped when the buffer is filled up. Then data will then be passed to the host in one
go. By default buffer mode is set to Streaming.

Digression: If your target has limitations about capturing to the host PC (for example no
networking), it is possible to capture to the target and then to manually copy the captured data to
your host PC. See Help > Help Contents > ARM DS-5 Documentation > ARM Streamline >
Advanced Customizations > Capturing data on your target

e You can use the Duration field to a maximum length of time to capture data in seconds or
minutes:seconds. By default Streamline will capture data until you click the Stop button which
we’ll see later.

e |f Call Stack Unwinding is checked and the program has been compiled with frame pointers in
ARM state then Streamline will be able to capture information about call paths, call graphs and stack
usage. Xaos is built this way, so leave Call Stack Unwinding checked.

page 66 of 99

= If you are using an ARM Energy Probe, in the Energy Capture section you should choose ARM
Energy Probe. Once the ARM Energy Probe is selected, the Tool Path will display the path for the
caiman application if the DS-5 was installed in the default directory. (If DS-5 is installed in the non-
default directory then, manually add the path to the caiman application. The caiman application can be
found in the .. .\Ds-5\bin directory.)

During a capture, Streamline will collect power information from the target using the energy probe and
then display the power charts in the report. There are three channels available on energy probe and each
channel gives us the information about the power consumption, voltage and current. Check the channels
you have connected and if you wish to analyze the Voltage and/or Current then those need be checked
as shown in the above figure. Power analysis is discussed in more detail later. See ARM Energy Probe
setup in the appendix on page 99 for setup information.

e The Analysis section lets you specify whether Streamline should Process Debug Information. This
will allow you to use Streamline to view source code. The High Resolution Timeline option enables
you to zoom in more levels in the timeline (for example context switching). These checkboxes only
control the defaults for the first report; they do not change the captured data.

= In the Program Images section, click the Add ELF image from Workspace... (second) button ()
and choose the xaos binary with debug information in the workspace from the /xaos/xaos-3.5/bin

folder. The symbols button () next to binary name indicates that debug symbols will be loaded for the
binary. You can also add more than one program to analyze at once. You can also add shared libraries,

the kernel (vm1inux) and kernel modules (. ko) to the list.

= Click Save to save the capture options.

You can use the Export... and Import... buttons to save and load favorite configurations to and from files.

Configure Counters

Advanced ARM processors have a performance monitor unit
(PMU) in hardware. Exactly which events can be counted and
how many events can be counted at once depends on which
ARM processor is being used. The operating system allows
access the performance counters for debug and profiling
purposes. The Cortex-A9 in the Snowball board has a cycle
counter and 6 configurable event counters.

Streamline defaults to capturing data from various counters in the
PMU, kernel and L2 cache controller, depending on the target’s
hardware and kernel.

=> Click the Counter configuration button (\El) to open the
Counter Configuration dialog where you can examine and
change the counters that you wish to capture.

¥ Counter Configunation

Choose the target counters to collect.
Connected to 165250 0.100:-8080.

Available Events
Lo Gmniann +

cedicticn

Cache: Duta TLB refill
Cache: Inst dependent stal
Cache: Inst TUB nefill
Caebie: Ingtruction edill
Cache: TLE stall

Clack: Dats engine

Cache (961

Counts the number of cycles where the core

Events to Collect

Event Baed Sampling

- | Threshald

has somne instnactions that i cannct e to any pipeline,

and the Load Store unit has at least one pending linefill regraest, and ne: pending TLB nequests

?

Load Defauts Save

You can hover your mouse over a counter to see a description of the event being counted.

You can add counters by dragging them from the Available Events list to the Events to Collect list. To see
the Linux kernel and L2C-310 events you will need to scroll the Available Events list down. You can
remove events from the Events to Collect list, so that you can count something else, by selecting them and
clicking the Delete button (). The order in the Events to Collect list is fixed. We will see later how to

reorder the display of the Timeline charts in the report.

page 67 of 99

= If they are not already in the Events to Collect list, add these counters:

« Cortex-A9/Cache: Data dependent stall: to see when the processor is waiting on the L1 cache

* L2C-310/L.2 Cache: DRH and L2 Cache: DRREQ: to see what the L2 data read hit ratio is. You
will need to delete L2 Cache: CO first because the L2C-310 cache controller only allows two counters
to be captured at once.

« Linux/Clock: Frequency: to the configuration to see how the kernel changes the maximum clock
frequency that the core can run at (dynamic voltage and frequency scaling).
=> You can delete the Disk 10: and Memory: counters since they are not very interesting in this
example. But leaving them in the list won’t hurt cither.

= Click Save to save the counter configuration. The counter configuration is saved on the target.

You can use the Export (1) and Import (£21) buttons to save and restore your favorite counter
configurations.

If you have your own hardware or software counters (for example, number of packets processed) you can
modify the gator software and use Streamline to capture and to display charts of your own custom counters.
The counters of the L2C-310 cache controller are a good example to start from.

Capture some profile data

= Click the start capture button (M) to collect data . Streamline Data £ =0
from the target. You are now prompted to specify the @ X B
name and location of the capture file where the profile T Z el
data is stored on the host. By default it will be in the ; -
directory . ..\My Documents\Streamline. YOU Can :é-. Ti%?i%t‘:%ﬁsé’?éi’csson e

change the file name, for an instance we are profiling S5 T Ciocurments and Setingsimahaoud iy DocumentsiStresrnline
Xaos application, | used Xaos_CO01l.apc. The C01

indicates that it is the first capture. When you save the

file, a new capture session will appear in Streamline

Data view. The spinning wheel next to the button indicates that data is being captured from the target
and the elaspsed time of the capture is shown.

= Start the Xaos application. Xaos needs a prspray environment variable to know which X server to
open it’s window on. Type these commands, without the $, in the Terminals view (169.254.0.1 is the

host's IP address):
$ export DISPLAY=169.254.0.1:0.0
$./xaos -autopilot -threed -threads 3 —-streamlinevisualannotation

This will start Xaos with three threads, put it into autopilot mode and apply a Pseudo 3D filter.
X Xaos (=5 ESR

File Edit Fractal Calculation Filters Ul Misc Help |
Hellen s Sen L fins Wees iug 505

L—"ﬁ' __1._"_4_-., LW
,‘ e

';“E“

] _ -5 M i .7.—‘._[‘11

v’

page 68 of 99

You can also set the options from the Xaos GUI by selecting Ul > Autopilot and Filters > Pseudo 3d.
(When running with multiple threads the Xaos program has some display glitches and even hangs
sometimes, but it’s still useful as a demonstration. You can quit it and start it over if it gets stuck.)

The application has many filters and fractal formulae. You can play with the menu items a bit and if you
disable Autopilot you can “drive” the application by clicking your left and right mouse buttons (but your

profile results will vary a bit from what we have here). Once you are finished looking at the pretty pictures,
continue.

= Click the Stop button in the Streamline Data view to stop capturing data and generate a profile
report. Streamline will show a spinning progress wheel as it analyses the captured data.
v Streamline Data &3 =0

® W &= | B

169.254.0.100 [<= H " H ud |

Xaos_C01
('?apture 28-Jan-2013 20:07:40; gator v12 (D5-5v5.13)
file f’ 165 2540 100 - 5T-Ericzsson Snowball platform
E T eers\mahgoul 1 \Doouments\Streamiine

i Xaos_C01_AD1

Analysis '|J |lr 33672 @ 30-1an-2013 21-00:05:

file fP' 158.254.0.100 - 5T-Ericzson Snowball platform
ms! Cylleers\mahgoull\Documents\Streamiing

Only the capture has stopped, Xaos is still running. If you want, you can quit it by closing its window or
typing Ctrl+C in the Terminals view where you started it or just leave it running.

page 69 of 99

Examine the Report

When the analysis is finished, the report view will open with a name determined by the capture’s name, for
example Xaos_CO01_A01 for the first analysis of the Xaos_CO01 capture.

=> Double click the Xaos_C01_A01 tab of the report view to maximize it.

All of the Streamlines views can be exported to text files by using the Export button (EJ) except for the
Code and Call Graph views.

Timeline view — a first look at the Streamline report

The Timeline view is the first view presented when a report is opened. It displays information to give an
overall view of the system performance. The graphs and percentages in your report may be different than the
ones shown here depending on how long you captured data for.

Timeline overview

View
tabs .
Time Saa;: |2er
ruler g
Charts
Visual
annotation
“filmstrip”
Process Samples
list HUD

Individual cores Cross-section marker

The top section of the Timeline view, below the time ruler, shows the system performance charts.
Streamline captures performance data from the hardware and operating system, and displays the samples or
“snapshots” of the chosen counters in the system performance charts. The order of the charts can be
rearranged by dragging them by the gray legend area at the left end up or down. Just to the right of the
legend is an indication of the full vertical scale of each chart (for example, m). You can get help on any

of the charts by clicking the Help button (|,@|) in the top left of the Timeline view and select Timeline
view charts.

If the target has multiple cores then some of the charts will show combined values for all of the cores. You
can use the expansion triangle to show the values for the individual cores as shown below.

Core0

Corel

Expansion
Triangle

page 70 of 99

Above the time ruler are the buttons and the Timeline overview.

The Timeline overview shows the current zoom level as a drop- m
down menu (-). The large time in the center shows the time

of the current mouse position as you move the mouse. The Timeline overview also shows the length of the
capture after the L and the number of processes after the P. Along the bottom of the Timeline overview is a

bar that represents the entire capture. Clicking on the bottom bar will jump scroll the Timeline to that point.

= Click the zoom buttons (|.3J$|) to zoom in and out one level at a time (by a factor of 2 or 2.5).
You can also use the drop-down menu (-) in the Timeline overview to change the zoom.

By default the finest resolution is 1 ms. If you use the High Resolution Timeline option when doing the
analysis the finest resolution is 1 ps. You can also zoom in and out by typing | or + and O or -.

Between the charts and process list is the cross-section thumb bar (M). If the cross-section
thumb bar is at the bottom of the view, you won’t be able to see any processes.

= You can drag the cross-section thumb bar up and down (—== ——) to adjust how many
charts and processes are shown.

By default the process list shows a “heat map” colored by CPU Activity in red, orange and yellow. Red
indicates that this is a “hot spot” i.e. an area where a lot of time was spent during the execution. These are
typically the parts of the code which one would inspect and look to optimize first.

If a process has multiple threads it will have an expansion triangle to the left of the process name that will
toggle between showing the individual threads and the aggregate of all the threads. You can see the context
switches where one process or thread stops running and another starts. Xaos gives these threads names,
Worker-1, Worker-2 and so on depending upon the number of threads that you choose to run at the time of
launching the application.

Process/thread contention is shown by ="~ in the process list. This is when a process or thread is runnable
but other threads are using all of the cores, for example here is a case where all three threads of xaos want to
run at the same time (but there are only two cores). Contention is also shown in the CPU Wait/Contention
chart.

@50.00%
H‘ ©0.009% avg. -
£

" Comenon

PRREBEN

Process

focus button CPU

[E 10036 i @ 100,003 avg.
: contention

[idle]]
[kemel] [
¥ [xaos #7067]
) SR
. [Worker-1 4 = N
- [Worker2 #7069]

We can change to coloring the processes and threads to be “by contention™:

= Click on the button at the left end of the CPU Wait/Contention chart.
Now the process list has been recolored to show red when processes are waiting to run.

= Click on the button at the left end of the CPU Activity chart to restore the normal coloring by CPU
use.

You can see how a particular process contributes to a chart by selecting it.
page 71 of 99

= Click on the expansion triangle at the left end of the CPU Activity chart to show both cores.

= Click on the legend area of the xaos process.
The xaos process will become selected and the CPU Activity chart will adjust to show the load caused by
just the xaos process. You can see the original values of the CPU Activity chart as “ghosts”.

= Click on the legend area of the xaos process again to deselect it.

Expansion l
Triangle
Load caused by
the individual
process

CPU Wait

|

Legend [t 1! |

area Jened ||

W [xzcs £7067] - -
2 Ea— .

[Warker-2 #7065]

If the target has multiple cores, you can click the Toggle X-Ray button (l_dil) to turn on X-Ray mode which
changes the coloring of the processes and threads to show which core they executed on. There is a legend at
the bottom left of the view to show which core is which color (== ¢® 18) Hovering over a colored
process bar will also show which core was active in a tooltip.

Let’s find out more about where the time is being spent:

=> Zoom into an area where you can see switching between xaos, the [kernel] and [idle] similar to the
pictures above and click to set the cross-section marker.

=> Show the Samples HUD (heads up display) by clicking the Samples HUD button (E]) or typing S.

The Samples HUD displays a colored histogram of where time was spent in the selected cross-section. If
you have supplied debug symbols for the sampled functions then the function names will appear in the
Samples HUD. For samples without symbols then the name of the process or shared library will be shown
surrounded in square brackets [1 to indicate that the time was spent inside some unknown function.

= Click on the Timeline anywhere under the ruler and to the right of the labels to change the selected
cross-section being inspected. The entries in the Samples HUD will change accordingly.

The initial width of the cross-section is determined by the current zoom level. The time of the beginning of

—

the cross-section is shown in the “thumb” of the cross-section bar (I Wi 23s -). You can move the
cross-section by dragging the thumb right and left and by typing the right and left arrow keys. You can
grow the cross-section by dragging the right or left edge of the cross-section thumb. The duration of the
cross-section is shown in square brackets (- Gl 2ss@d 5),

At the top of the Timeline view, above the time ruler, is the caliper range (¥#=***W'). You can set the
caliper range by dragging either end, or by right-clicking and choosing Set left caliper, Set right caliper or
Reset calipers. All of the samples outside the caliper range are ignored in all of the other views. You can

also reset the calipers to include all of the captured data by clicking the Reset calipers button (},ﬂb at the
top of the view.

Streamline has an Annotate feature that allows the application or kernel to add timestamped text, images
and bookmarks to the Streamline report at key points in your code. These annotations are displayed in the
Timeline and Log views. In the screenshot above text annotations are used to show when Xaos’ update
display and calculate fractal functions are executing. Additionally Xaos has also instrumented to capture the

page 72 of 99

frame buffer as a visual annotation which is displayed it as a “filmstrip” in the Timeline. The blue markers
at the top and bottom of the filmstrip chart show the time at which the visual annotation was sent.
=> Zoom to about 200ms or coarser resolution and move the mouse right and left over the filmstrip to
see the sequence replay.
There is more information about annotations later.

Configuring Charts

You can control many aspects of the display of the charts in the Timeline view by using each chart’s
configuration panel. You can control which counters are displayed and how they are grouped. This panel is
used to change all aspects of the chart from color to the counters that the chart uses, giving the option to
display the data in a more convenient way.

Each chart can display one of more series of captured data in a variety of ways. By default, the chart for the
two L2 cache counters that we added (L2C-310/L2 Cache: DRH and L2 Cache: DRREQ) is a stacked

2 This is not really a good presentation because the data read requests
counter (DRREQ) mcludes the accesses that were also counted by data read hits (DRH) so stacking the
values is double-counting the hits. We will now see how to make this chart more user friendly.

= Click on the chart configuration button (# |) to open the chart configuration panel for L2 Cache

Chart .
configuration Chart type Tool bar Serl_es
button Choose color . section

buttons section

A = e A A ~ NS | | VAN VY VD V. TO OO L O Y A PR A A
M s [l Title (2 Cache | Average Selection [Averag ISR Save As Snippet Jll Remove Chart

= [Name: Tooltip: Expression: |SL2CacheDRH ‘ Unit: | | Q QJ
- @ Mame: Tooltip: Expression: |SL2CacheDRREQ ‘ Unit: | | Q QJ

= Click on the chart color button () to choose the color for differentiating the two series.

In the tool bar section, there are three chart type buttons on the left hand side,
=> As mentioned above, by default the chart is stacked on top of each other, to click on the Overlay
chart button () to see the area below the line is filled with the color defined in the series control for
each data set. Now the series higher in the chart control will appear behind series that are lower in the

b il
chart control. This is the most appropriate way to view these series. &=t ‘

=> To go back to the default view, click on the Stacked chart button (k&) to fill line charts to stack on
top of each other.

= Click on the Stacked bar chart button (&) to see the bar style chart, each bin in the chart is
represented by a colored bar.

Adding/Deleting series:
=> Click on the add sign button (@) at the end of the series to add a new series. Fill the Name for the
series. Fill the Tooltip field.

= In the Expression field, press Ctrl + Space or the $ symbol to activate a drop-menu that shows you a
list of counters. You can select a counter in this Content Assist list to see its description. Double-click on
a counter to add it to the Source field.

page 73 of 99

= Enter the Unit type for the series. The value entered here will appear when the Cross Section Marker
is used to select one or more bins.

= To delete a series, click on the minus sign button (Q).

Check boxes on the tool bar:
Average Selection: When this option is checked, any selection made using the Cross Section Marker shows
the average value of all bins included in the selection. If unchecked the overlay is a total value of all bins.

Average Cores: When this option is checked, values in a multi-core chart are the average of the individual
cores when you have not used the multi-core disclosure control to show per core data. If unchecked this
chart control option, the multi-core chart shows the totals from all cores.

Percentage: In a percentage style chart, values are plotted as percentages between 0 and 100 percent. The
maximum value in the chart represents 100% in a percentage chart and all other values are compared to that
number to calculate a percentage.

You can drag the series in the chart configuration panel up and down to reorder them using the handle (=)
that is located on the left hand side of the series.

You can also control how counters from multiple cores are combined: average or sum.

You can also control how counters values are reported over a selection: average, sum, minimum, maximum
or frequency.

You can control the descriptions (tool tips) and units that are displayed in the charts.

You can use the Save as Snippet button to save the current chart and its series as a “snippet”. After it has
been saved, you can use the Snippets menu, located in the bottom left of the Timeline view to add this chart
as it is currently configured to any report.

You can use the Remove Chart button to remove the current chart from the Timeline view. If you have
saved the chart as a Snippet, you can add it back to the Timeline view later using the Snippets menu.

The Snippets menu also allows you to add a new, blank chart which you can fill in from scratch and to
import and export the snippets from/to a text file.

Power analysis

The ARM Energy Probe is designed to be a low impact, inexpensive solution to give you quick feedback on
the impact of your code on the system energy footprint.

If you have the ARM Energy Probe connected to your target and if you setup the path to the caiman binary
as instructed earlier, then you will also get a Power chart in the Timeline view. You will also see the
Current & Voltage charts of “Channel 0” presuming that the Current & Voltage options were selected in
the capture options. You can drag the Power chart upwards to get it closer to the top using a handle. If the
Energy Probe is measuring the total power going into the target, then the changes in CPU power usage may
get obscured by the power provided to other parts of the system.

page 74 of 99

2.6
@214W avg

The power data is correlated against the CPU Activity on the core. If the Energy Probe is measuring the
total power going into the device, the CPU only power may get obscured by the power provided to other
parts of the system. In this case the correlation may be slightly out by tens of milli-seconds. You can use the
energy probe alignment menu(IESEERN) |ocated in the bottom left of the Timeline view to manually move
the power chart right and left on the x-axis if you think the correlation needs to be adjusted.

= Drag the Channel 0 Power chart up or down so that it is next to the Clock chart so that we can
correlate the power with frequency.

= Click on Clock and compare the graph variations against the power and try to analyze the power
consumption as per the frequency.

= Click on an application thread in the process bar and try to correlate the energy & power consumption
of that task.

To find out more about the energy probe setup see ARM Energy Probe setup in the appendix on page 99.

Call Paths view

= In the Samples HUD in the Timeline view, you can right click on a function name to bring up
navigation options. Find a cross-section where the do_3d32 function is listed in the Samples HUD, then
click on the function name to take you that function in the Call Paths view.
The Call Paths view displays the call paths taken by an application that were sampled. They are listed per
process in the view. If you followed the previous steps it should look S|m|Iar to the screenshot below.

' X%aos_001_001 7 B8
[Timelne | CalPaths @ Functions 5} Code | =< Call Graph 5 Stack @ Log

P == Call Paths: 2 1

O A== | Samples (Self): 924 (12,66%) |

Sef | Process |Totsl w! Stack Process/Thread/FunctionName a Location

0.00% 100.00% 36.77% 0 & [kernel) - -
0,00% 100.00% 33.21% 0 & [idie]

0.00% 100.00% 29.62% 0 = [xaos #924]

0.00% 64.06% 18.98% 0 = [theead #924] -

0.00% 42.83% 12.69% 176 = main ui.c:1087

0.14% 42.83% 12.69% 320 = main_loop ui.c:1725

0,00% 30.43% 9.01% 448 = uh_do_fractal ui_helper.c:912

U.CD% 30.43% 9.01% 7'84 = dok 3d.c:136

20.95% 6.21% = pth_function thread.c:193
--!E_
9.48% 2.81% # do_fractal 200M.¢: 1547

D,oo% 9.30% 2.75% 480 + ui_updatestatus ul.C:361

0.26% 2.41% 0.71% 496 & ul_mouse ul.c:658

0.32% 0.32% 0.10% 464 processevents ui_gtk,c:539

0.05% 0.09% 0.03% 384 + ti_lookup_timer timers.c:331

0.00% 0.05% 0.01% 3s2 + processbuffer ui.c:833

0.05% 0.05% 0.01% 464 _process_group timers.c:472 v

There are five columns in the view which display the time spent as per the total number of the samples taken
in that function / process.

e Self — The sampled time spent in that function only and not in its children as a total of the samples in
that process.

page 75 of 99

e 9% Self — The sampled time spent in that function only and not in its children as a percentage of the
samples in that process.
e Process — The sampled time spent in that function and its children as a total of the samples in that the
process..
e 9% Process — The sampled time spent in that function and its children as a percentage of the samples
in that the process.
e Total — The sampled time spent in that function as a total of the time of all processes.
The percentages are color-coded based on their value. Functions where a lot of time was spent are
highlighted in red.

The Stack column is an indication of the amount of stack used by that function.

= Selecting the name of a process, thread or function will display the top functions by time in the
bottom pane that are lower in the call path:

=> All of the columns can be sorted by clicking on the column name. If you hold Shift while clicking on
a column name the clicked column will become a secondary sort key (which is shown by two dots under
the sort arrow). This works in all of the Streamline table views.

The Call Paths view will only display function names for code for which we have loaded the symbols. If the
symbols were not loaded then the data for those binaries will appear in the <anonymous> location.

P [g [N O fra—— Call Paths: 1
@‘ l____‘ E: r|:=| { Samples (Self): 0 (0.00%)
Self | %Self | Process | %Process Total w| Stack | Process/Thread/Function Name & Location
| 17632 7577%| %618% 0| | meos#0510l ||
12,468 53.58% 18.51% 0 [kernel] <anonymous>
0 0.00% 1,269 545% 1.88% 0 = _start Xaos
0 0.00% 1,269 545% 1.88% 48 [=- main_loop ui.c:1724
1 <001% 908 390% 1.35% 208 = uih_do_fractal ui_helper.c:912
0 000% 907 390% 135% 352 = doit 3d.c:136
6 003% 500 215% 0.74% 496 +- do_fractal zoom.c:1575
33 014% 407 175% 060% 480 = pth_function thread.c:209
374 161% 374 161% 0.56% 624 do_3d32 3dd.c77
0 000% 352 151% 0.52% 176 # ui_updatestatus ui.c:360
0 0.00% 9 0.04% 0.01% 192 * ui_mouse ui.c:657
1231 529% 1,231 529% 183% 0 __addsf3 Xaos
1,042 448% 1,042 448% 1.55% 0 [libc-213.50] <anonymous>
585 251% 585 251% 087% 0 [gator] <anonymous>
494 212% 494 212% 0.73% 0 __mulsf3 Xaos
80 034% 80 034% 012% 0 _nesf2 Xaos
63 027% 63 027% 0.09% 0 [libglib-2.0.50.0.3000.0] <anonymous>
60 0.26% 60 026% 0.09% 0 [libgobject-2.0.50.0.3000.0] <anonymous>
50 02% 50 021% 007% 0 __aeabi_cfcmpeq Xaos
46 020% 46 020% 007% 0 __aeabi_fcmplt Xaos
43 018% 43 018% 0.06% 0 [Id-213.50] <anonymous>
23 010% 23 010% 0.03% 0 __aeabi_fsub Xaos
5amples v ‘;/oﬁamples | Instances Function Name 4 Location
lb[kernel] <anonymous>
1 _addsf3 Xaos
1 [libc-213.50] <anonymous>
1 [gator] <anonymous>
1 _mulsf3 Xaos
1 do_3d32 3dd.c:77

=> Here you can see how much time was spent inside shared libraries used by the application. You can
re-analyze the profile by adding more symbols for shared libraries. We will do this as an exercise later.

page 76 of 99

.Timeline ﬂ Call Paths Functwns‘ . Code‘ =< Call Graph| =] Stack|W Log|

- Call Paths: 1
J ‘ = Samples (Self): 1,042 (1.55%)

Self | % Self \Processv\ % Process [Total ‘ Stack I Process/Thread/Function Name | Location [
17,632 75.77% 2618% 9 [xaos #30519] -
s 12460 5358% 1851% - Tkemnel] <anonymous>
0 000% 1,269 545% 188% | \ =+ _start xao0s
0 0.00% 1,269 545% 1.88% 48 | = main_lcop ui.c:1724
1 <001% 908 390% 135% ‘ guih_do_fractal ui_helper.c:912
0 0.00% 352 151% 0.52% 176 | | ui_updatestatus ui.c:360
0 000% 9 004% 0.01% 192 | \ 'ul mouse ui.c:657
EESsEE 103 1.83% —_addsf3 xaos
—-a-
0.87% 0 ~[gator] <anonymous>
494 494 212% 0.73% 0| \ —_mulsf3 Xaos
80 80 034% 012% 0| : —__nesf2 Xaos
63 63 0.27% 0.09% 0| } - [libglib-2.0.50.0.3000.0] <anonymous>
60 60 0.26% 0.09% 0| ~ [libgobject-2.0.50.0.3000.0] <anonymous>

For the Call Paths to work the code needs to be built with frame pointers enabled. This allows the
Streamline’s gator daemon to reconstruct the call path taken by an application. In gcc the build argument is
-fno-omit-frame-pointer. The Call Graph and Stack views also require frame pointers.

Functions view

The Functions view displays a list of all the ~ Svr—
functions that were sampled during the @ @ [sfmpn.; (Self: 1120 (166%)
prOfile session. The functions view is the Self w| %Self | Instances | Function Name a| Location | Image |

quickest way to find which functions are 59 [kemel] <anonymous> <anonymous>

Timeline | 27 Call Paths]Q Functions | Coel = Call Graphl g8 Stackl & Log]

- . . 3 _addsf3 Xaos Xao0s

your h_Ot funct_lons._ If you’ve set the caliper 75 220% 3 mulf3 e —
range in the Timeline view then only the 1 31 [libc-23.50] <anonymous> <anonymous>

samples within the callipers will be reflected 552 s BNNEIETE N T R R

. . . 689 1.02% 12 [gator] <anonymous> <anonymous>

In the Functions view. 531 0.79% 9 mand_peri docalc.c:471 X30s

I:> Select the Functions tab at the top of 352 052% 1 VisualAnnotatelmage annotate.c:149 xaos

302 045% 3 calccolumn_16 zoomd.c:145 Xaos

your report' 224 033% 3 _nesf2 Xaos Xaos

= You can Shift- or Ctrl-click to select
multiple functions to see a total count of the self time in the Totals panel in the top right of the view.

The Instances column shows the number of times a function appears in separate call paths.

Next let’s go investigate the code inside one of our hot functions;
= Right click on the do_3a32 function and choose Select in Code View from the context menu.

Code view

Now the do_3d32 function . rent v -
will be hlghllghted in blue in .Tlm ne| # Call PathsIQFunctlons’el{ Call Graph | B Stacki@f Log|

the Code view. @ @J @@. [Total: 982 (1.46%)]

(If the source file has not Find 1
been found by defaUIt yOU Samples]%Samples| I |Line150urce File: C:/Users/mahgou01/Documents/DS-5_1622_v513/xaos/xaos-3.5/src/engine/3dd.c
can locate it by pressing the /* Fix boundary cases. */

ﬂ /*relsums[@] = relsums[1];

e relsums[end*2-1] = relsums[end*2-2]; */
() button (')I' the Click 1 0.10% inpdatafend + 1] = inpdata[end] = inpdatafend - 1];
here to locate it.” link to 7 9.71% = ;np t[x] + input[x + 1] + input[x + 2] + input[x + 3] +
- . u u u

browse the file system. You inputfx + 4] + inputfx + 5]3
can use the displayed path s BiTe Goe sy §
name to help you locate the mnslod o s

. . - unsignead 1in H
file. This may happen if you =
used a pre'bUiIt COpy Of Xao0s ::mAizrzﬁsuiéiei ;?Igezngzt'g:?square to get nicer shapes. */
instead of building it on your inp = sum + sums[x * 2 + 1] + sums[x * 2];

- - relsums[x * 2] = sum;

host or if the source files are 18 e e

page 77 of 99

in a different location now compared to when you built the application.)

Lines in the source code where many samples were taken are highlighted in red. Lines of code that don’t
have any percentages next to were not sampled at all in this profiling run. Profiling for longer periods of
time or at a higher sampling rate may give a better resolution in the source code.

You can also open up the disassembly for the code you are viewing.

= Click the Toggle Asm button (:#™) in the top right hand corner of the report. You can select a line or
lines of source code and the corresponding disassembly lines will be highlighted in the bottom. Vice
versa, you can also make a selection in the disassembly pane and the source above will be highlighted,
along with the other disassembly lines for that source line.

Xacs_energy. powes_curment voltage AL -

.Y-mc&M ¥ Call Paths @ Functions yy Code =T Call Graph| 3 Stack | §§ Log
2 | X ' Totak 87 D13%)

Q) e 9 & AN

Fond

Samples % Samples. | Line Source File: C:/Users/mahgoudl/Documents/D5-5_1622 v513/x805/x805-3.5/src/engine/3dd.c
135 . . yse
136 ¢
137 elsu ¢ 2-1 1 e 2+2
1 0.1e% 138 inpdatafend + 1] « inpdatafend)] « inpdatafend - 1];

135 sum -
7 0.71% 140 input[x] + Imput{x + 1] + imput{x + 2] + imput[x + 3] ¢

141 input{x + 4] + input[x + 5];
142

P 102 hile (x < end) (

144 unsigned int inp;
145 unsigned int d;
146
147 Ave e
148 Lnp =
149 inp = sus ¢+ sues{x * 2 ¢ 1] + suasfx * 2);
430 MSEE 1se relsuss(x * 2] = sum;
18 1.83% 151 inpdata[x].down = inp;

I DD e —————————

Samples % Samples | Address Opcode Daassembly
xd0R6s41(LOR rs,[rii,n-0x38]
00068420 LOR ré,[r11,8-9x6¢)
MxOORES424 LD~ rd,{r0,r})
Ox00068428 LORM r1,{rS,00xc)
Oxdo0esa2(LOR ri2,[ri1,2-0x74)
D006 8430 RSS » ri
DDVNEL 34 LOR rl,[r6,mxi0)
GxdO0E84 38 ADO 2,r2
000484 3C ADO r2,rd,rl
$xO004s44e ADO rd,rd,ri2

Notice the 2 More indicator in the screenshot. It indicates that there are two more disassembly instructions
highlighted above. It’s useful when compiler has moved the code out of order. You can click on the
indicator to scroll them into view.

Call Graph view

The Call Graph view is a graphical display showing which functions called each other. Hover above a
function name to see the number of samples taken on that function.
= Use the mini-map in the bottom left hand corner to scroll around the map. If the mini-map is in your

way you can disable it by selecting () in the top left corner.

=> Enable Uncalled functions by clicking (..).These functions were not in the call chain of any
sample.

= Enable System functions by clicking (.j”d".). This displays runtime library functions and shared
libraries without symbols.

To help navigate the call graph right you can right click on a function to find options to highlight callers and
call paths.

page 78 of 99

= Right click on the do_3a32 function. Select Caller Tree. The call path for the function will be
highlighted in blue to help you navigate the call graph.

1 Xaos_energy_power_current_voltage A01 3 7 =0
B Timeline & Call Paths | @ Functions 51 Code | = Call Graph| B Stack| @ Log

Y= =™

[<0.01% iy | 0.15% fillline_16

| 0.08% control_routine

bfilll6 0.45% calccolumn_16

| 0.00% drawing_area_resized

dosymetry2 16 0.13% calcline 16

processqueue 0.00% uih_waitfunc

0.00% startbgmkrealloc 0.05% mkrealloc_table

0.00% main | | |
[0.00% ui_resize | [0.00% uih_restorepalette
[0.00% menu_activate] [0.00% uih_filtersw
[0.00% uih_mkconted | | 0.00% uih_mkdefaultpalette)
[<0.01% uih_do_fractal | [0.00% doit
0.00% main_loop [0.00% ui_mouse | [0.00% uih_update
[0.00% ui_updatestatus | [0.00% display
|
— |
! L
e
(y4F 1] » n

Stack view

The Stack view is designed to give the user an idea of the amount of maximum stack usage in a particular
thread. In this view you can also see and sort the stack usage of all the functions used by the application.

= Select the bar next to a particular thread to view the call chain and maximum stack usage for that
thread

v Xaos_energy_power_current_voltage A0l % =8
B Timeline | #/ Call Paths | @ Functions | [Code |<& Call Graph | B Stack| 4 Log

Ql &) e] a

Maximum Stack Depth By Thread

[xaos #30519][xaos #30519] uih_do_fractal L5200
[xaos #30519][Worker-1 £30520] control_routine 720
[xaos #30519][Worker-2 #30521] control_routine | 720
Function Stack Usage (1,084 functions) Show All
Stack » | Size Function Mame - Location [
160 240 add_resizeitems ui.c:991 -
160 1,232 calculatenewinterruptible zoom.c:1382 I:\
160 952 color_output formulas.c:465
160 716 combine_methods fractal.c:118
160 1176 createpalette palette.c:260
160 276 find_variable catalog.c:24
160 1,364 gettoken play.c:511
160 1,272 incolor_output formulas.c:548
160 712 menu_printhelp xmenu.c7i4
160

568 randomize_segments

palette.c:754

The total may be larger than sum of the individual entries. This is due to recursive functions.

= Select the Show All button to view the stack usage of all the functions that were sampled.

Note : If all the functions that were sampled, then the Show All button will be greyed out.

page 79 of 99

Log view and Annotations

The Log view displays a list of all the text and visual annotations that were generated by the application
along with a time stamp for each and the time delta from the previous entry. You can filter the list on the
various columns using regular expressions. When you select an entry for a visual annotation the image is
displayed.

= Type X in the Message regex filter.
Now only the visual annotation log entries are shown (because only they contain an X in their messages) and
the values in the Delta column have been recalculated.

= Select one of the visual annotations and click the grow button in the top right corner of the visual

annotation thumbnail

v\ Xaos_energy_power_current_voltage A01 i3 = m|
uTimeline ## Call Paths | @ Functions 51 Code | =" Call Graph | B Stack | @ Log

s~ (s (Log Entries: 1 o
Q@ (&) e l L=
Message Filter Group Filter Channel Filter Core Filter Where Filter

When Delta Message Group | Channel |Core Where

8655761 +0.000000 [N SN Group 0 Channel0 1 [xaos #30519] | [xaos #30519] -

9022064 +0.366302 ol TN T :
9131561 +0.109497 (LI IHIEN

9.632049 +0.500488 BelE< NI R{ETac]
9636444 +0.004394 [qUielie:

9639953 +0.003509 jquens
9.659912 +0.0199
10.194702 +0.534790 |
10.194732 +0.000030 |
10.196258 +0.0015
10199310 +0.0030.

“UWelcome to XaoS versiom 3.5

10.380767 +0.000488
10.637908 +0.257141
10.638122 +0.000213
10638214 +0.000091 |
10.638275 +0.0000
10.639160 +0.0008
10.639190 +0.000030 |
10.642181 +0.00.
10.644439 +0.002
10.644470 +0.000030 |
10.645385 +0.0009
10.645538 +0.0001
10.645568 +0.000030 |
10650024 +0.004455

= Group 0 Channel 0 1 [xaos #30519] | [Worker-1 #30520] -

=> You can use the up and down arrow keys to replay through the images.

You can double-click an annotation entry and you will be taken to the Timeline view and the cross-section
marker will be set to the time of that annotation. You can right-click on an entry and choose Select
Process/Thread in Timeline or Select in Call Paths, which can be handy if you have many processes and
threads creating annotations.

In order to create annotations the application, libraries, kernel or kernel module code must be modified. The
Annotation features uses standard file 10 to write to a virtual annotation file, /dev/gator/annotate.
Header files containing C style macros and Java classes are provided to annotate from both Java, C/C++
user space and also from kernel space. You can find the annotate header files by going to Help > ARM
Extras... > gator > annotate. To find out more about annotation see Help > Help Contents > ARM DS-5
Documentation > ARM Streamline > Annotate and the Log View.

Advanced Streamline

Reanalyze Streamline data

Because we did not include the C library in the initial analysis, all samples in it are shown together as
[1ibe-2.13.s0]. We can add the C library and reanalyze the same capture to get a new report, showing
the C library function names.

page 80 of 99

Because the version of libc on the target is different than the copy we used to build against in the example
distribution, we need to get a copy of the target’s libc onto the host.
=> Use My Target in the Remote.Systems view to copy Sftp files > Root > /1ib/arm-1linux-
gnueabi/libc-2.13.so t0 the host by dragging it to the xaos project in the Project Explorer view.
(You could also copy it by dragging it to a Windows Explorer window or use Local in the Remote
Systems view.)

This copy of 1ibc does not have debug information so Streamline won’t be able to show the source code of
the C library (which would also require the source files), but there are still enough symbols to identify the
functions.

4 Streamline Data 32 =0
Captured streamline data and generated reports are shownfri?the @ X $ =B
Streamline Data view. Captured data is identified by () and hasa | 16924010 A Y

(1| Low
'|I | o
OL-Jun-2012 o

name like Xaos_CO01, whilst a generated report is identified by (A) 7 JIEIER Streamiine Capture Data
and has a name like Xaos_C01_AO01. bl Double-click to analyze

| L= Kaos_001_001
'|J |* 00:00:54.887 @ O1-Jun-2012 14:26:36

PF J 10.120 ST-Ericszon Snowball platform
|| imsl Clzersisdouglas\Documents\Streamiine

=> Double-click the Xaos_CO01 capture data in the Streamline
Data view.

= Click the Add ELF image from Workspace... (second) button (), choose the copy of 1ibc-
2.13.so that you copied from the target and click the OK and Analyze buttons; then click the OK
button in the save report dialog:

= Choose an ELF image... =]

5 = Xaos_energy_power_current_voltage ==
= gnometris - [SEA S
&5 hello Analyze
bz kernel_module Choose the settings to produce a new report.
= threads

4 =5 xaos z

- . Analysis

[2 .cproject - 5

B Broiect [¥] Process Debug Information

E) README.tt ["]High Resolution Timeline

’f’ lc;:zz;;ﬂ | Pregram Images

op libc-213.50 (- |E.

@ reaame.ntml 3 b]

© | splash.bmp L @ ststreamline_resultsj\Xaos_energy_power_current_voltage.apc\xaos

(= xaos-3.5

|=| xaos-RTSM-example.launch

|=] xaos-gdbserver-example.launch

= @
<) [Analyze 1 [Cancel

‘C')) [OK J [Cancel

page 81 of 99

A new report, Xaos_C01_A02, will be generated which will show the C library functions like memcpy
instead of [1ibc-2.13.s0] as shown:

| Xaos_energy_power_current_voltage_A01 v Xaos_lib &2 2% Xaos_energy_power_current_voltage_A02

[Timeline | /7 Call Paths | @ Functions | [} Code| =< Call Graph| B Stack| & Log| /i\ Warnings

@ (] P e S o= |

Self w| % Self | Instances Function Name - Location Image

59 [kernel] <anonymous> <anonymous>
3 _addsf3 Xa0s Xa0s
3 _mulsf3 Xaos Xaos

3 do_3d32 3dd.c:77 Xaos
12 [gator] <anonymous> <anonymous>
10 mand_peri docalc.c:471 Xao0s
3 write libc-2.13.50 libc-2.13.50
1 pthread_setcanceltype libc-2.13.50 libc-2.13.50
1 VisualAnnotatelmage annotate.c:149 xaos
3 calccolumn_16 zoomd.c:145 Xa0s
224 033% 3 _nesf2 Xaos Xaos
PR iSlmemcpy llbc2i3so Jlbc2i3so | |
149 0.22% 3 _10 file_write libc-213.50 libc-213.50
131 019% 3 _aeabi_fcmplt Xa0s Xa0s
18 018% 3 _aeabi_cfcmpeq Xaos Xaos

You can also change the High Resolution Timeline option when you reanalyze.

Because we did not include the kernel debug symbols in the analysis, the report shows all the kernel
functions lumped together as [kernel]. You can add the kernel debug symbols and re-analyze by double
clicking on the captured data Xaos_CO01; clicking the Add ELF Image from File System (first) button()
and finding kernel\vmlinux-3.3.0-1000-ux500 and then clicking Analyze and then OK in the save
report dialog. Now the kernel functions are shown individually.

Streamline captures and analysis can also be scripted from the command line. Please refer to the Using
Streamline on the Command Line section in the documentation.

Import Captures

Captured data (a .apc directory) can be copied to a different location or host and imported into Streamline.
If you don’t have a target, there is a pre-captured report in the Xaos example project /xaos/Streamline
that you can use instead of capturing your own.

=> Click the Edit Locations... button (=) to add the location | StreamlineData 53 . @ | % o = | B= T O
...\My Documents\DS-5 Workspace\xaos\Streamline tO . oy |—| —| —|
the Streamline Data view. POt nEme or i addres = E |

xaos-multithreaded-VXA9x4-example

06-Dac- 2012 1218:33; gator v12 (D5-5v5.13)
E> Create a‘ report by dOUble CIiCking the Capture Xaos- f '1_-".L59[5';:30-.5.Z’;"‘.‘[}:)EC-.CI"‘;_’EI’B".DS-E'\.’l'OlG:JE{E".‘-’.EO's".itrEEr"'I'E
multithreaded-VXquadA9-example and clicking Analyze.
and then OK in the save report dialog.

This report was generated on a Versatile Express Quad-Core Cortex A9 board. In the Timeline view you

will be able to expand the chart for each core and multithreaded
I CPU Load

process. Buew
W System

= Expand the xaos process so that you can see the threads.

= Click the Toggle X-Ray button (\ﬂ}) to turn on X-Ray
mode.
Now by zooming in and hovering over the activity bars, you can
see which core the processes and threads were running on at any
given time.

You can export the report views from Streamline as text by

selecting (Q.‘). This allows you analyse the captured data

outside of the Eclipse environment. ek
page 82 of 99 [thread 5]

[thrazd 2]

[thread 3]

Troubleshooting Streamline

My target and host can't communicate
There are a number of things that could to check here

1) Make sure that your IP Address is in the same range as the target i.e. for the workshop set it to
169.254.0.1. The target defaults to 169.254.0.100.

2) If you’re on a laptop disable WiFi and any other network adapters that you are not using.

3) Try to ping the target from the host and the host from the target.

4) Check your firewall settings. If you have trouble with the target and host communicating and
your host is running a firewall you may need to configure it to allow network traffic from the
target (for example, make IP address 169.254.0.100 a "friend" or allow Xming in Inbound
Rules). You may need to quit and restart Xming after the change.

Xaos does not appear even though I can ping the target
1) Make sure that you selected No access control when you ran XLaunch.

page 83 of 99

Back to Debugging
If you have enough time, here a a few more topics about debugging you might be interested in.

Debugging an application that is already running

In the examples above, when we started debugging the application it was not running yet and we started a
new copy of the application to debug. It’s also possible to attach the debugger to an application that is
already running.

L e . - .
= First disconnect ('"2.') any connected debug configuration in the Debug Control view. You can

remove (X) it from the Debug Control view if you want. The DS-5 Debugger can have multiple
connected debug configurations at the same time , so it’s not strictly necessary to disconnect any existing
debug configurations, but it can be confusing, especially if you're debugging multiple copies of the same
application.

= If the Terminals view is not already open, use Window > Show View... > Other... > Remote
Systems > Terminals to open it.

=> Use the Terminals view to start gnometris on the target without gdbserver (as one command):
/home/linaro/gnometris --display=169.254.0.1:0 &

= Start a New Game and play it for a short while.

We need to change the debug configuration so that it uses Connect only instead of trying to debug from
main. We will do this by copying the existing configuration so that we can have both configurations handy.
You can just leave the game running.

=> Choose Run > Debug Configurations... to open the Debug Configurations dialog.

= Select the gnometris configuration that was created earlier and click the duplicate button (“=)).
=> Change the name from gnometris (1) to gnometris-attach.
= In the Connection pane, set the Debug operation to Connect to already running gdbserver and
put the target IP address, 169.254.0.100, in the Address field.
= In the Files pane, create a Load symbols from file entry in the Files list by clicking the
Workspace... button and choosing the gnometris file at the top-level of the gnometris project.
= In the Debugger pane, choose Connect only instead of Debug from symbol.
= Click the Apply button to save the changes and click the Close button to close the dialog.

The gnometris-attach debug configuration appears in the Debug Control view. It is currently

disconnected.
7% Debug Contral 22 [{5 Project Explorer| 48 Remote Systems =8
S IR v
b,.& gnometris disconnected (beagleboard.org - OMAP 3530)
Q*& gnometris-attach disconnected (beagleboard.org - OMAFP 3530)

Now we'll start gdbserver and attach it to the running game:

=> On the target, execute the command:
gdbserver --attach :5000 $! &
The $1 represents the process id of last command that was started in background, with a trailing s. In

our case that was the /home/linaro/gnometris command. The output should be something like:
Attached; pid = 1280
Listening on port 5000

The game stops when gdbserver attaches to it. gdbserver is waiting for the debugger to connect.
=> Double-click the gnometris-attach debug configuration in the Debug Control view to connect to the
gdbserver. The Terminals view will show:

Remote debugging from host 169.254.0.1
You can also connect by selecting the gnometris-attach configuration and clicking the Connect (hi)
button or by or by selecting the gnometris-attach configuration in the Debug Configurations dialog
and clicking the Debug button.

page 84 of 99

At this point the game will be stopped at some arbitrary point, you can now set breakpoints, run and debug
it. When attaching to an already running application, the debugger won't initially know about shared
libraries that the application has already loaded or threads that were created before gdbserver was attached.
You can execute the sharedlibrary command in the Commands view to tell the debugger to learn about all
currently loaded shared libraries.

Advanced Debug Configurations

The initial temporary breakpoint can be set in the debug configuration with Debug from entry point or
Debug from symbol. It can also be set using the command line or scripts. Execution of the application
typically starts in the dynamic loader, ld-linux.so, which loads and initializes the shared libraries and then
jumps to the application's entry point which then executes various library initialization routines before
arriving at the main function.

We can change where the initial temporary breakpoint is placed by changing the setting in the debug
configuration, for example if we use Tetris: : gameNew instead of main then when debugging starts
Gnometris would not stop at main but would open its window and run until we executed the New Game
(Ctrl+N) command. The initial temporary breakpoint is removed after it is hit.

If we want the application to start running and not stop anywhere in particular we can choose Connect only
and add run as a command to execute in the Debugger tab of the debug configuration. In this case we'll

need to use the Interrupt button (“-.), a breakpoint or perhaps a signal to stop the application.

Debugging Threads (“extra credit”)

Unfortunately Gnometris only has a single thread so it’s hard to show the thread features of the debugger.
DS-5 contains a threads example. If you have some time left, you can import it, build it and debug it
according to the instructions its readme . htm1 file. To run the threads example on the target, you'll need to
create a debug configuration for it, like we did for Gnometris; but threads doesn’t need use shared libraries
or need any arguments. There will be a threads-RTSM-example debug configuration that uses the RTSM.
You can put a breakpoint in the accumulate function which is run in multiple threads

The threads are displayed under the debug configuration in the Debug Control view. You can control the
way threads are displayed.
=> Choose Flat from the Thread Presentation submenu of the Debug Control view’s drop-down menu
()
45 Debug Control £2 ™. [T5 Project Explorer| 4§ Remote Systems| = O
L I I T O - S - A

g
i)
J

% threads stopped (beagleboard.org - OMAP 3530)
i Thread 1

= 0:d02F4278 @ libc.sob 7
42 Thread 2
accumulate()+60 @ threads.c:114 (threads)
thread_work()+52 @ threads,c:99 (threads)
040054808 @ libpthread.sol) 7
ead 3
accumulate()+60 @ threads.c:114 (threads)
thread_work()+52 @ threads,c:99 (threads)
040054808 @ libpthread.sol) 7
i Thread 4
accumulate()+60 @ threads.c:114 (threads)
thread_work()+52 @ threads,c:99 (threads)
040054808 @ libpthread.sol) 7
i Thread 5
accumulate()+56 @ threads.c:114 (threads)
thread_work()+52 @ threads,c:99 (threads)
040054808 @ libpthread.sol) 7
i Thread b

= 0d02F4278 @ libc.so.6 7

&
IR E=m]
g

o
(5

page 85 of 99

Below each thread will be the frames of its call stack. You can change the debugger’s focus from one thread
to another by clicking on the different threads. You can collapse all of the threads by clicking the Collapse

All button (=).

And you probably noticed that you can make a breakpoint apply only to one or more specific threads by
using the Breakpoint Properties dialog.

Debugging on the RTSM

If you've still got time left, you can try using the gnometris-RTSM-example debug configuration to debug
the game running on the Real Time Sysrtem Model (RTSM). The same binaries (application and shared
libraries) will work on the RTSM. Check below first if your host is running Windows Vista or Windows 7
(or later?). You can find the gnometris-RTSM-example debug configuration in the Debug Configurations
dialog. You can select it, inspect its various settings (don't change them) and click the Debug button.
Another way to start the gnometris-RTSM-example debug configuration is to choose Add Configuration
(without connecting) ... from the Debug Control view’s drop-down menu (*") and then select gnometris-
RTSM-example and click OK. Now gnometris-RTSM-example appears in the Debug Control view and
you can double-click it to start it as usual.

Using the RTSM on Windows Vista or Windows 7

The RTSM uses a telnet client for its simulated serial ports. On Windows Vista and Windows 7 (and later?),
the telnet client is disabled by default. Before you use the RTSM you will need to enable it by choosing
Start > Control Panel > Programs > Programs and Features > Turn Windows features on or off and
checking Telnet Client and clicking OK.

Other DS-5 features you didn't see

Due to time, hardware or other constraints there are some DS-5 features that we haven't had a chance to
show in this workshop. We'll give a brief description here to let you know about them.
e Screen view: There is a Screen view that can display target memory as a picture. For example,
displaying an LCD RGB565 data buffer.
e Target view: There is a Target view that displays the properties of the target.
e Command-line debugging: the debugger can be driven from the command line and/or scripts instead
of using Eclipse.

Finished!

Thanks for your time. Please give us feedback on either this workshop or the
tools.

page 86 of 99

Appendix A: Setup

Host Setup

DS-5 can be used on Windows and Linux hosts. If your host has not already been setup for you then you
will need to:

e Download and install an evaluation copy DS-5 by following the Download Now link from
http://www.arm.com/ds5. Also download the DS-5 Linux Distribution Example found in a file
named Ds500-BN-00009-r5p0-13rel0.zip Which is a separate download located “next to” the DS-
5 installer.

e Obtain and install an evaluation license (covered below)

e Adjust the host’s networking so that it can communicate with the target. TCP/IP (for example
Ethernet) is used to communicate with the target when doing application level debug and Streamline
profiling. The rest of this workshop assumes that the host’s IP address is 169.254.0.1 and that the
target’s IP address is 169.254.0.100. If your addresses are different you will need to make the
appropriate adjustments to the instructions in this workshop.

e If you are using a Windows host you will need to install and start an X server such as Xming (see
below). The Gnometris and Xaos applications use the X server to display a window. The Public
domain version of Xming can be downloaded from http://www.straightrunning.com/XmingNotes.

e If your host is running firewall software it may need special configuration to allow full network
communication with the target.

Importing projects

If you already have an Eclipse project with the same name, for example if you've already imported an older
version, you won't be able to import it again. You can either rename or delete the existing Eclipse projects if
you want to import them again. If you delete them, you should check the Delete project contents on disk
checkbox. If you have deleted the Eclipse project, but the project folder is still in the workspace directory,
for example if you didn’t check Delete project contents on disk, then you will need to delete the project
folder “by hand” before you can import it again.

Importing distribution
The distribution project doesn't build anything itself. It contains header files and copies of shared
libraries from the target filesystem that are needed to compile and link the gnometris project. Collecting
these shared libraries and headers into distribution project is a handy way for the gnometris project to
be able to find and use them. The distribution project is located in a separate . zip file that is not
installed by the DS-5 installation and needs to be downloaded separately. It is listed as DS-5 Linux
Distribution Example at https://silver.arm.com/browse/DS500 and the resulting file name is ps500-BN-
00009-r5p0-13rel0. zip.

=> Choose File > Import... > General > Existing Projects into Workspace > Next >

= Choose Select archive file and use the Browse... button to select ps500-BN-00009-r5p0-
13rel0.zip

page 87 of 99

http://www.arm.com/ds5
http://www.straightrunning.com/XmingNotes
https://silver.arm.com/browse/DS500

= =]

= Import

Select

The distribution project will be the only project and it will be checked.

,

=]

Create new projects from an archive file or directory.

Select an import source:
[type filter text]

= General
&, ArchiveFile
1 Existing Projects inte Workspace
[, File System

EL Preferences
= C/C++
= Cvs
= Remote Systems

= Import

@ Select archive file:

Projects:

Import Projects

Select a directory to search for existing Eclipse projects.

_) Select root directory:

Ci\Users\demo\Downloads\D5500-BN-00008-r5p0-05reld.zip

= [= ks

-

Browse...

Browse.. |

distribution {distribution)

Select All
Deselect All

(= Run/Debug
&= Tasks
= Team

P
@ < Back Next > s @

Copy projects into workspace
Waorking sets
[Add project to working sets

Select...

= Click the Finish button. If the Finish button is disabled then Eclipse will put a message explaining

why at the top of the Import dialog.

Importing Gnometris

Now import the gnometris project which is in a
different . zip file:

=> Choose File > Import... > General > Existing
Projects into Workspace > Next >

=> Choose Select archive file and use the
Browse... button to select c: \Program Files\DS-
5\examples\Linux_examples.zip

= Click the Deselect All button; then check only
gnometris. If you’re doing the Streamline section
of the workshop, you can also check xaos to import
it now or wait until later.

= Click the Finish button.

= Import

Import Projects

Select a directory to search for existing Eclipse projects.

_ Select root directory:
@) Select archive file:

Projects:

= =S|

-

Browse...

C\Program Files\D5-5\examples\Linux_examples.zip Browse... 1

[] example_library (example_library)
|¥]| gnometris (gnometris)

[7] hello (helio)

[kernel_module (kernel_module)
[] threads (threads)

[u-boot (u-boot)

[7] xaos (xaos)

Copy projects into workspace
Working sets
[T] Add project to working sets

e

Select All
Deselect All

Select...

Mext =

Finish] [

Cancel

page 88 of 99

Changing Gnometris
The Gnometris example project is supplied pre-built, but we are going to make some changes to the
Gnometris code so that Gnometris will update its display more often so that we can see the effects of some
of our debugging actions. If this workshop was setup on your host for you, this may already have been
done.

= Expand gnometris > gnome-games-2.26.2 > gnometris in the Project Explorer view

L Project Explorer &3 =
& | e
. 1= distribution -
4 =% gnometris
- [Includes

4 [gnome-games-2.26.2
4 = gnometris
2= help
> = pi
blockops.cpp

m

blockops.h
bloc

B E B

ps-noclutter.cpp

renderer.cpp
renderer.h
renderer-noclutter.cpp
renderer-noclutter.h

RERER EE

scoreframe.cpp
scoreframe.h

=

&,

tetris.cpp
« || tetris.h
= AUTHORS -

4 Ll I

=> Double-click on tetris.cpp and scoreframe.cpp to open them

For the next step you can copy the text from readme.html located in the top level of the gnometris
project folder. (Click on the link to Debugging the Gnometris application executable with gdbserver and
scroll to under point number 13.)

= In tetris.cpp, insert the three lines marked //_ARM_ refresh ... below into both
Tetris::timeoutHandler () Near line 933 and Tetris: :keypressHandler () near line 1000. You can
use the scrollbar and watch the line numbers or use Navigate > Go to line ... (Ctrl+L).

#ifndef HAVE CLUTTER
t->field->redraw() ;
t->scoreFrame->scoreLines (0) ; //_ARM_ refresh score
t->preview->previewBlock (blocknr next, rot next, color next); //_ARM_ refresh next block
gtk _widget queue draw(t->preview->getWidget()); //_ARM refresh display

#endif

Note: the Gnometris application is built with the macro Have_cruTTER not defined.
= In scoreframe.cpp and comment out the lines 123 and 124 in scoreFrame: : scoreLines ()

//case 0:
//return level;

=> Save the changes and choose Project > Build Project. You can see any messages or errors from
building in the Console view.
Now you can resume where you left off.

page 89 of 99

Importing Xaos
The Xaos example project is in a different .zip file from the distribution project:
=> Choose File > Import... > General > Existing Projects into Workspace > Next >
=> Choose Select archive file and use the Browse... button to select C:\Program Files\DS-
S\examples\Linux_examples.zip
= Click the Deselect All button; then check xaos.
= Click the Finish button. If the Finish button is disabled then Eclipse will put a message explaining
why at the top of the Import dialog.
Now xaos appears in the Project Explorer view. The Xaos example project is supplied pre-built, but we’ll
clean and rebuild it to show that we can and so that debug information will refer to the correct pathnames on
your host (instead of some host in Cambridge). You won’t be able to rebuild Xaos unless you’ve imported
the distribution project as described above.
= Right-click on xaos in the Project Explorer view and choose Clean Project; then right-click it again
a choose Build Project. You can see any messages or errors from building in the Console view.
Now you can resume where you left off.

Creating a Target Connection
We will establish a connection to the target using Eclipse's Remote Systems Explorer (RSE) so that we can
browse its file system and create a terminal connection.
= If the Remote Systems view is not open, you can open it by choosing Window > Show View >
Other... > Remote Systems > Remote Systems in any perspective.
= Click on the tab of the Remote Systems view to bring it to the front.

= Create a new connection by clicking the New Connection button (/=5

#5 Debug Control | [Project Explorer ﬂﬁ Remote Systems &2 = 0O/ Ce
£ | B8l%~
. E—_f Local D - -
Define a connection to rermote system |

=> Choose General > Linux > "Next >"; put the target's IP address, 169.254.0.100 in the Host name
field and use My Target as the Connection name; click "Next >". (If target is using a different IP
address, for example, if your target is connected to a network with a DHCP server, you'll need to
determine its IP address by using the serial console or a monitor, keyboard and mouse.)

page 90 of 99

=> Check ssh.files then click the Finish button. If you click "Next >" instead of Finish, you want the
rest of the default settings: processes.shell.linux, ssh.shells, and ssh.terminals.

~ New Connection = @
Select Remote System Type Il
Any distribution of Linux
v = New Connection =] @
Remote Linux System Connection
System type: = New Connection = 2
type filter text Define connection information
Files
4 [General Define subsystem information
Ty FTR Only Parent profile: E102390
A Linux
=l Local Configuration Properties
5 55H Only Host name: 169.254.0.100 | [ftpfiles Property Value
urix Unix Connectien name: | My Target] |
Windows
Description:
[#] Verify host name
Available Services
A2 Ssh [/ Sftp File Service
%4 SSH Connector Service
£ ssH Settings
Description
(?} ‘Work with files on remote systems using the Secure Shell (ssh) protocol.
o
® e
P
@ <Back || Net> || Enish || cancel

Now you can resume where you left off.

page 91 of 99

Skip these steps if the target is

already setup for vou

Appendix B: Snowball

Board details and connections

The Snowball board contains a ST-Ericsson Nova A9500 processor (Dual Cortex A9 + Mali 400 GPU). It
has 1GB DDR and a 4 or 8 GB eMMC. (“eMMC?” stands for “embedded MMC” and is Flash memory built
into the Snowball which is accessed as if it were an MMC or SD card.) The board is powered by a 5 Volt
power supply. For more information please see www.igloocommunity.org

The following instructions are based on using the 12.03 (that is March 2012) Oneiric Linaro release on the
target (see www.linaro.org). There may be differences, for example different file or directory names, in
later Linaro releases.

JTAG connection mini-USB to PC

to DSTREAM serial Console

N

Power On - 5V Power Supply
Button
o mini-USB to
-~ HuborMouse
microSD
card

1 Ethernet

HDMI

Note that the builtin eMMC can be used instead of the microSD card.

Write a target image to a microSD card
We will write a microSD card (4GB or larger) with an image for the target. The image will contain a
bootloader (U-Boot), Linux kernel and root filesystem.
= Using your host, download an image for your target from releases.linaro.org. For a Snowball target,
download http://releases.linaro.org/images/12.03.1/oneiric/ubuntu-desktop/snowball_sd-ubuntu-
2012.03.1.img.gz to your host and decompress it. (When decompressed it’s 3GB).
= Now write the decompressed image to a microSD card. On Windows you can use a program like
Win32Disklmager https://launchpad.net/win32-image-writer.
= With the target power disconnected, install the microSD card in the target.

Serial setup

The Snowball uses a serial console over USB, which we will communicate with using an Eclipse Terminal
view. This is different, but confusingly similar to the Terminals view in Remote Systems Explorer which
use ssh over TCP/IP instead of serial.

page 92 of 99

http://www.igloocommunity.org/
http://www.linaro.org/
http://releases.linaro.org/images/12.03.1/oneiric/ubuntu-desktop/snowball_sd-ubuntu-2012.03.1.img.gz
http://releases.linaro.org/images/12.03.1/oneiric/ubuntu-desktop/snowball_sd-ubuntu-2012.03.1.img.gz
https://launchpad.net/win32-image-writer

= Connect a USB mini-B cable from your host to the mini USB port next to the 20-pin JTAG connector
(shown at the top in the picture above).

= Connect the 5V power supply to the target, but don’t push the blue 2 Terminal Settings =
power button yet.

= On a Windows host, you may need to install driver software for the
FTDI USB-to-serial chip; see www.ftdichip.com/Drivers/\VVCP.htm

View Settings:

View Title:!| Serial

= Open the Terminal view by choosing Window > Show view > e s

Other... > Terminal > Terminal. = ’
= Click on the Settings button (') to open the Terminal Settings Settings:

dialog. Port CoM27 -
= Change the View Title to Serial to make it easier to keep track of. BaudRste: [115200 v
= Set the Port to the name of the serial port on the host (see below). DataBits: |8 -
= Set the Baud Rate to 115200. StopBits: |1 |
= Use the defaults of 8 data bits, 1 stop bits, no parity and no flow Parity: [Nene -
control. Flow Controk: |None - |
= Click OK the Serial view will connect to the port but there won’t be Timeout (seck | 5

any output yet.
=You can drag the tab of the Serial view to the right edge of the

window to dock it there so that it it’s easier to see what it’s doing and
switch to it.

0K HI Cancel
-

To determine the COM port on a Windows host:

= Go to the Windows Control Panel > Device Manager, expand the ‘Ports (COM & LPT)’ section to
find the USB Serial Port that you need to connect to. Your COM port might be different than
“COM27”:

= Device Manager EI@
Eile | Action View Help
s | T HE &

425 E102390
.18 Computer

b Disk drives

.'i: Display adapters

> -4, DVD/CD-ROM drives

: 'x:lE' Floppy drive controllers

: "1”,-‘% Human Interface Devices

.- IDE ATA/ATAPI controllers

- 22 Keyboards

.-l Mice and other pointing devices
.- Monitors

.Y Network adapters

3 Other devices

a 15" Ports (COM 8 LPT)

¢ .JZ Communications Port (COMI)

b

= Intel(R) Active Management Technology

D Processors

4):) Security Devices

b -4 Sound, video and game controllers
----_'l_-' Systemn devices

b - ¥ Universal Serial Bus controllers

For example on an Ubuntu Linux host:
= Verify that the serial port is recognized for example run dmesg | grep ttyUSB
= Use the device name found, for example /dev/ttyusBo, to connect to the serial port.

page 93 of 99

http://www.ftdichip.com/Drivers/VCP.htm

Skip these steps if the target is already setup for you

The Snowball’s serial console is a root shell, but there is no root password on Ubuntu systems. When
you’re not using the serial console (for instance when you use a Remote Systems Explorer terminal), you
can login as user=linaro, password=linaro and use sudo.

Flash an eMMC image to the board

You need to do this if your snowball contains firmware or start-up files which are fairly old or incompatible
with later Linux releases. The firmware or start-up files can be security aware and may disable Linux kernel
JTAG debug. You can turn it off the security checks in the Linux kernel, but you will need to rebuild the
kernel to do this. The eMMC images provided from www.igloocommunity.org contains the correct firmware
which will allow you to debug the Linux kernel.

To flash an eMMC image you will need a Linux host and the riff tool installed. Please see
http://www.igloocommunity.org/support/Flashing_howto

The eMMC image also contains a “magic” configuration partition
(http://www.igloocommunity.org/support/ConfigPartitionOverview).

More information about the Snowball boot process can be found here
http://www.igloocommunity.org/support/Booting_Guide

Linaro Linux target setup
Now we will use the target itself to download some required software packages from the Internet.
= Use the Serial view to connect to the target (see Serial setup above on page 92).
[= Connect the target to an Ethernet network with Internet access before powering up/booting the target.
= Press the blue power button. Messages should appear on the serial console as the target boots.
When the target has booted it will prompt root@linaro-ubuntu-desktop:~#. YOU Can press return in case
the prompt got lost in the messages.

= Install the Streamline gator daemon and driver by executing these commands on the target
apt-add-repository -y ppa:linaro-maintainers/arm-ds5
apt-get -y update
apt-get -y install gator
= Install ssh by executing this command on the target’s serial console:
apt-get -y install ssh

If you need to use a newer version of gator than is available from the Linaro Package Respository via apt-

get then you can build it yourself on the target by following these steps:

= Install ssh and g++:

apt-get -y update

apt-get -y install ssh g++
= Setup an RSE connection and copy .. ./Ds-5/arm/gator/driver-src and . . ./Ds-
5/arm/gator/daemon-src from the host t0 /home/1inaro On the target.

=> Build the gator driver and daemon:
cd /home/linaro
tar -xzf driver-src/gator-driver.tar.gz
make -C /usr/src/linux-headers- uname -r' ARCH=arm modules M='pwd’ /gator-driver
tar -xzf daemon-src/gator-daemon.tar.gz
make -C gator-daemon CFLAGS='-03 -Wall -Werror -mthumb-interwork'

= Install the just-built gator driver and daemon:
stop gator-daemon
rmmod gator.ko
mv /lib/modules/3.3.0-1000-ux500/extra/gator.ko{, .orig}

cp gator-driver/gator.ko /lib/modules/3.3.0-1000-ux500/extra/gator.ko
mv /usr/sbin/gatord{, .orig}

cp gator-daemon/gatord /usr/sbin/gatord

start gator-daemon

page 94 of 99

http://www.igloocommunity.org/
http://www.igloocommunity.org/support/Flashing_howto
http://www.igloocommunity.org/support/ConfigPartitionOverview
http://www.igloocommunity.org/support/Booting_Guide

Skip these steps if the target is

already setup for you

U-Boot download and debug setup

You need to do this setup if you are going to do the sections on bare-metal debugging of U-Boot, unless it’s
been done for you.

The following instructions are based on the 12.03 Oneiric Linaro release and may differ slightly (for
example directory names) in later Linaro releases. It also assumes that you’ve completed the previous
section to install Linaro 12.03 to your target.

In this section we will download the U-Boot and kernel sources for the Snowball board using the Ubuntu
package manager. We’ll also build the U-Boot image on the target. Once this is completed we will create
projects for these inside DS-5 and copy the sources from the target to our host so that we can use it for
debug.

To debug U-Boot on the Snowball board we need to get the sources and build U-Boot. You can do this
natively on your target by following these steps:
= Use the Serial view to connect to the target (see Serial setup above on page 92).
= Connect the target to an Ethernet network with Internet access before powering up/booting the target.
= Turn on the device and boot the Linaro Linux image

(= In the serial port change directory to /home/linaro
cd /home/linaro

= Download U-Boot

apt-get -y source u-boot-ux500
= Build U-Boot
cd u-boot-ux500-2009.11
@@@ The next line is to work around a bug

sed -e 's/icache_enable/\/\/icache_enable/' \
cpu/arm_cortexa9/db8500/cpu.c > cpu.c && \
mv cpu.c cpu/arm cortexa9/db8500/cpu.c
make u8500_ snowball config
make -j2
\ make clean
The make clean is just to remove some object and library files that we don’t need for debugging.
= In DS-5 Eclipse create a new General project File > New Project > General > Project and name the
project u-boot-ux500
= Open the Remote Systems view and copy the folder /home/linaro/u-boot-ux500-2009.11 into
the u-boot-ux500 project in the Project Explorer view. (If you have not yet connected to your target
please see Creating a target connection in the appendix on page 90) It will take a few minutes to copy
all the sources to your host.

L™ Project Explorer 22 — <‘1=’={> = = O] 48 Remote Systems 2 H &
1 1=F u-boot-uxS00 + E' Local
= ﬁ) snowiball
=% Sftp Files
-+,
= % My Home

u-book-uxS00_2009,11-6,dsc
£ wiboak-uxS00_2009. 11-6.tar gz
+ I=I=> Raoak
1 p_ Shell Processes
T3 5sh shells

8 5h Terminals

Linux kernel download and debug setup

You need to do this setup if you are going to do the sections on kernel and module debugging, unless it’s
been done for you.

page 95 of 99

Skip these steps if the target is

To debug the Linux kernel we need to use the target to fetch the debug symbols (vmlinux) and the
corresponding sources:

already setup for you

= Use the Serial view to connect to the target (see Serial setup above on page 92).

= Connect the target to an Ethernet network with Internet access before powering up/booting the
target.

= Turn on the device and boot the Linaro Linux image

= In the serial port change directory to

cd /home/linaro
= In order to find the kernel sources, duplicate the deb line in
/etc/apt/sources.list.d/hwpack.linaro-landing-team-ste.list and replace deb with deb-
src
= In the serial port download the kernel debug symbols (vm1inux)

apt-get -y --force-yes install linux-image-$ (uname -r)-dbgsym
= Find the vm1inux file containing the kernel image and debug symbols and copy it to the current

directory. Then create a copy with only the debug symbols:
cp $(dpkg -L linux-image-$ (uname -r)-dbgsym | grep vmlinux) /home/linaro
objcopy --only-keep-debug vmlinux-3.3.0-1000-ux500 \
vmlinux-3.3.0-1000-ux500.debug_only

= Download the kernel sources
apt-get --force-yes -d source linux-image-$ (uname -r)

= In DS-5 Eclipse create a new General project File > New Project > General > Project and call
the project kernel

= Open the Remote Systems view and copy vmlinx-3.3.0-1000-ux500.debug only and linux-
ux500_3.3.0-1000.2. tar.gz to the kernel project in the Project Explorer view (If you have not
yet connected to your target please see Creating a target connection in the appendix on page 90) It
will take a few minutes to copy all the sources to your PC.

#5 Debug Control | I Project Explorer 2 = O || 44 Remote Systems 2 =8
=SR-3 & 8| |Bl&®~
1= kemel nwe-wG00.3.3.0-1000 2 4argz || b B Local
= u-boot-uxs00) 4 ¥ My Target
4 ¥y Sftp Files
4 5 My Home
3.3.0-1000-ux500.debug_only - [kernel_module

- [0 u-boot-ux500-2009.11
examples.desktop
linux-ux500_3.3.0-1000.2.d=sc

C3) linux-ux500_3.3.0-1000.2.tar.gz
u-boot-ux500_2009.11-7linarol.dsc
:_J u-boot-wS00_2009.11-7linarol.tar.gz
wvmlinux-3.3.0-1000- w500
&= vmlinux-3.3.0-1000-1500.debug_only
. &> Root
. B Shell Processes
% Sch Shells
?;,'J 5sh Terminals

= Import the kernel sources by right clicking on the kernel project folder and choosing Import >
General > Archive File > Next; click on the Browse... button and choose the kernel source archive
linux-ux500_3 3 0.1000.2.tar.gz in your workspace. Click Finish to start the import, then go

page 96 of 99

have some tea — this will take some time:

2 mpor - o=
Archive file
Please specify folder L=
= 4

From archive file: | ocuments\DS-5 Workspace\kernel\linux-ux500_3.3.0-1000.2 targz Browse...

v/ ~
V| = igloo-kernel
J| = arch
V] = block
V| = crypto
V| 2= debian
V| = debian.linaro
V| = Documentation

V| = drivers -
Filter Types... | | Select All | | Deselect All
Owverwrite existing resources without warning
) Eics
'\?j < Back Jext > Finish Cancel

You will get a message that says you encountered errors during the import; ignore it and click Cancel to not
import the source again. This is due to Windows not understanding symbolic links in the archive nor file
names that differ only in upper/lower case.

Kernel module debug (modex) build and setup
DS-5 ships with a kernel module debug example called modex. To run the example the kernel module needs
to be built against the kernel on your target. We can do this by copying the source to the target and building
the example natively.
= Choose File > Import... > General > Existing Projects into Workspace > Next >
= Choose Select archive file and use the Browse... button to select C:\Program Files\DS-
S5\examples\Linux_examples.zip
= Click the Deselect All button; then check kernel_module.
= Click the Finish button. If the Finish button is disabled then Eclipse will put a message explaining
why at the top of the Import dialog.
Now kernel_module appears in the Project Explorer view. The kernel module example project is supplied
pre-built for the RSTM and Beagleboard images provided in DS-5 but not for Snowball. You won’t be able
to rebuild the kernel module on a windows machine and you also need the kernel headers to build it. So we
will rebuild it on the target.
= Copy the kernel_module project over to your target by dragging it into the Remote Systems
connection to the target

75 Debug Control | [Project Explorer 3 = O || 48 Remote Systems % £ & |
== =1 Local -
*2 Local Files
% Local Shells
X snowball
*, Sftp Files
el_module o My Home

[B[%~ -0

» =% kernel
. |I=5 kernel_module
» =% u-boot-ux500-2009.11

m

0 kernel_module

0 u-boot-uxs00-2009.11
linux-ux500_3.2.0-1000.8.dsc

CD) linux-1x500_3.2.0-1000.8 tar.gz
u-boot-ux500_2009.11-6.dsc -

page 97 of 99

Skip these download steps if the
target is already setup for yo

Next we’ll build the kernel module natively on the target and then copy it back onto our PC. In your Serial
3 view to the target run the following commands

(= Change directory to the kernel module
cd /home/linaro/kernel module

= Download the kernel headers from the internet to the target

apt-get -y ——force-yes install linux-headers-$ (uname -r)
= Re-configure the kernel

make -C /usr/src/linux-headers-$ (uname -r) oldconfig

\E> Build the kernel module

make -C /usr/src/linux-headers-$ (uname -r) M=$ (pwd) modules

= Copy modex . ko back to your host PC so that you have the symbols

kernel-mainapp-beagle-eample.launch kernel-module-beaglexm-examplelaunch

%5 Debug Control | [Project Explorer 23 = O || 44 Remote Systems &3] | | - | & ¥ =0
== I X snowball "
1= kernel i Fl *fn El:"tp Files
=% kernel_module 4 7 My Home
g'rf' Binaries 4 = .k.ernel_module
[Includes > 8 beagleboard
(= beagleboard > 8 RT.SM_EB_W'
= RTSM_EB_V7 — Ztrl.:]p.ed
(= stripped |y built-in.o
\g| main.c COPYING =
lg] modex.c Kbuild .
35 main - [arm/le] E |7 kernel-mainapp-beagle-example.launch
[£ main.c |7 kernel-mainapp-beaglexm-examplelaunch
COPYING |7 kernel-mainapp-RTSM-examplelaunch
Kbuild 7] kemnel-module-beagle-examplelaunch

kernel-mainapp-beaglexm-example.launch kernel-module-RT5M-example.launch

kernel-mainapp-RTSM-examplelaunch rain
\g| main.c

Makefile
Makefile_generickernel

|7 kernel-module-beagle-examplelaunch
|7 kernel-module-beaglexm-example.launch

|7 kernel-module-RT5M-examplelaunch)
Makefile Makefile_level2

le| modex.c
|my modexko

Makefile_generickernel
Makefile level2

You are now ready to debug the kernel module example.

Setting a static IP address

You can set a static IP address on the target by editing /etc/network/interfaces 0On the target and adding

the following lines to the file. You can change 169.254.0.100 to the address that you want the target to

use.
auto ethO
iface eth0 inet static
address 169.254.0.100
netmask 255.255.0.0

You’ll need to reboot the target for the changes to take effect. To make sure the changes are written to the
disk (microSD card) execute the commands sync; sync 0n the console before you reboot it.

With the etho entry in /etc/network/interfaces NetworkManager will no longer attempt to manage the
interface. For use on a cross-over cable, you can now use ifup etho to enable the interface with the static
IP address and ifdown etho to disable it. If you attach the Ethernet port to a network with a DHCP server,
you can use dhelient -1 ethoO to get an address from the DHCP server.

Note: For the Ethernet to be setup automatically you need to have the Ethernet cable connected when you
boot the target.

page 98 of 99

ARM Energy Probe setup

The ARM Energy probe can measure the power of up the three channels or measurement points at a time. If
your board has power measurement points you can connect the probe to those points and specify the resistor
values in the Capture & Analysis Options dialog. The snowball board does not contain any soldered on
measurement points for us to use. Instead, we will use the T-Piece (which contains a 20mOhm shunt
resistor) to measure the total power consumed by the board.

Connect the energy probe and T-piece in-_lj_n with ower supply as shown below:

When you first connect the probe to your PC you will need to install a driver from the DS-5 installation. On
windows this is typically c: \Program Files\DS-5\sw\energy probe. Once the driver is installed, the
probe connected and the target powered on the Energy Probe will display a green LED.

page 99 of 99

