

DS-5 Workshop: Linux Kernel and Application Debug, Trace and
Profile on Snowball
Copyright 2010-2013 ARM Ltd. All rights reserved.

This workshop demonstrates the features of the DS-5 Debugger by debugging and tracing U-Boot, the Linux

kernel and a game called Gnometris that is an ARM Linux application running on the target. It also

demonstrates the ARM Streamline profiler using an application called Xaos. It will introduce the views of

DS-5 Debugger and ARM Streamline and demonstrate their features. Some of the features are used in

explicit instructions that you are expected to follow and are marked with this symbol . Other features are

only mentioned and are not critical to the flow of the workshop. You don't have to use them, but you are

generally encouraged to try them out anyway.

We will use a Snowball board as the target, but DS-5 can also be used with any ARM Linux target that has

networking or the Real Time System Models that come with DS-5. The Gnometris and Xaos applications

that we will be using are supplied as examples with DS-5.

(version 31 January 2013; v5.13 d1622; HW; HWCortex-A9; DSTREAM; DSTREAMLinaro; DSTREAMSnowball; Snowball)

page 1 of 99

Contents

DS-5 Workshop: Linux Kernel and Application Debug, Trace and Profile on Snowball ... 1

Preparation ... 2
Host Setup ... 2
Target Setup .. 2
Starting Eclipse .. 2
Installing a DS-5 License ... 2

Bare-metal Debug and Trace (U-Boot) ... 4
Setting up your own target: Download, build and setup U-Boot ... 4
Connect the hardware.. 4
Debugging U-Boot on the target .. 5
Quick tour of the debugger .. 10
Trace view ... 12
Registers view ... 15
Watchpoints ... 15
Functions view ... 16

Kernel and module debug ... 20
Setting up your own target: Download the Linux kernel symbols and sources .. 20
Debugging the kernel before the MMU is on .. 20
Debugging the kernel initialisation after the MMU is on ... 22
Peripheral Registers .. 28

Application debug ... 33
Starting the X server on the Host ... 33
Importing Gnometris .. 34
Connecting to the Target ... 34
Debugging Gnometris on the Target .. 36
Detailed Debugging ... 40
Functions view ... 40
Breakpoints .. 41
Source and Disassembly views ... 43
Variables view .. 44
Stepping ... 48
Registers view ... 49
Debug Control view ... 50
Call Stack ... 50
Play the game .. 51
Gaming the game .. 52
Expressions view ... 52
Expression Inspector view ... 53
Memory view .. 53
Commands and History views ... 56
Scripts view .. 57
Breakpoint scripts .. 57
Show off your skills .. 58
Advanced Breakpoints ... 58
More features in Source and Disassembly views .. 58
Shared Libraries and Modules view ... 60

Change of topic .. 61
ARM Streamline Workshop using Xaos on Snowball ... 62

Introduction to ARM Streamline .. 63
Preparation ... 63

Host Setup ... 63
Target Setup .. 63
Starting Eclipse .. 63
Installing a DS-5 License ... 63
Importing Xaos ... 64
Install Xaos to the target .. 64
Set the Capture Options .. 66
Configure Counters .. 67

Capture some profile data .. 68
Examine the Report .. 70

Timeline view – a first look at the Streamline report .. 70
Configuring Charts ... 73
Power analysis ... 74
Call Paths view .. 75
Functions view ... 77
Code view .. 77
Call Graph view ... 78
Stack view .. 79
Log view and Annotations .. 80

page 2 of 99

Advanced Streamline.. 80
Reanalyze Streamline data .. 80
Import Captures ... 82

Troubleshooting Streamline .. 83
Back to Debugging ... 84

Debugging an application that is already running .. 84
Advanced Debug Configurations ... 85
Debugging Threads (“extra credit”) .. 85

Debugging on the RTSM .. 86
Other DS-5 features you didn't see ... 86
Finished! ... 86
Appendix A: Setup .. 87

Host Setup ... 87
Importing projects .. 87
Importing distribution.. 87
Importing Gnometris .. 88
Changing Gnometris .. 89
Importing Xaos ... 90
Creating a Target Connection .. 90

Appendix B: Snowball ... 92
Board details and connections ... 92
Write a target image to a microSD card ... 92
Serial setup .. 92
Flash an eMMC image to the board ... 94
Linaro Linux target setup ... 94
U-Boot download and debug setup .. 95
Linux kernel download and debug setup.. 95
Kernel module debug (modex) build and setup ... 97
Setting a static IP address ... 98
ARM Energy Probe setup .. 99

Preparation

If the host and target have already been setup for you, you can skip down to Starting Eclipse below.

Otherwise you’ll need to start by installing some software.

Host Setup

DS-5 can be used on Windows and Linux hosts. If your host has not already been setup for you then you

will need to follow the instructions in the appendix on page 87

Target Setup

For the workshop you’ll be supplied with a Snowball board that already has U-Boot, a Linux kernel and root

filesystem on it. If you want to setup your own target please see Appendix B: Snowball: Linaro Linux target

setup page 94.Serial setup

Starting Eclipse

 Start > All Programs > ARM DS-5 > Eclipse for DS-5 and choose a location for the workspace

where Eclipse projects will be stored. The default workspace location is fine.

 If this is the first time you've started DS-5 you will see the "Welcome to ARM DS-5" home page;

click Go to the workbench. You can get the Welcome page back if you want it later by choosing Help

> Welcome.

Installing a DS-5 License

In order to use DS-5 for this workshop you will need to have a license for DS-5 Basic Edition, either a full

or evaluation license. (A license for Professional Edition will also work.) If the workshop has been setup

for you then you will already have a license. If you don’t have a license a dialog will open with an

explanation and a button to Open License Manager.... You can get an evaluation or full license by opening

the license manager using Help > ARM License Manager..., clicking the Obtain License... button and

following the instructions. You will need to be connected to the internet. When you receive the license file,

you need to add it by using the Add License... button.

page 3 of 99

Eclipse views (a brief digression)

The Eclipse window is divided into a number of rectangular panes. Each pane contains one or more views.

Each view has a tab at the top with the view’s name. For example, in the screenshot on the cover, Debug

Control, Project Explorer and Remote Systems are three views in the same pane. Views of source files

are named after their files, for example main.cpp.

You can easily rearrange panes and views. Dragging the dividing lines between panes changes their size.

Clicking on a view’s tab brings it to the front. You can drag a view’s tab to move the view to another pane

or to split a pane vertically or horizontally. You can even drag a view out of the Eclipse window entirely to

create a new window. Double-clicking on the tabs of a pane will expand the pane to fill the window

(maximize). Double-clicking it again will restore it down.

You can close a view by clicking the close button in its tab. If a view you want is not open, you can open it

by using the Window > Show view > menu.

A particular grouping of views is called a perspective. For example, there is a DS-5 Debug perspective that

we will be using, but there is also a C/C++ perspective and others. Eclipse provides ways to switch quickly

between perspectives and to create your own custom perspectives from a group of views.

Some of the DS-5 views such as Variables, Expressions, Registers, Functions and Modules have

columns. You can change the width of the columns by dragging the dividing lines in the column headers

right or left. You can change which columns are displayed by right-clicking on the column headers and

choosing from the context menu. In Functions and Modules you can sort by any of the columns by clicking

on the column heading. If you shift-click a different columns you can set further minor sort keys which

shows as the sort arrow and two or more dots.

There are more things you can do, such as minimizing panes and setting views to be pop-up “Fast Views”,

but that’s probably enough to get you started.

Getting help (more digression)

You can press the F1 key (or Shift+F1 on Linux) at any time to get help about the current view. You can

use Help > Help Contents > ARM DS-5 Documentation to view the documentation. You can access

cheat sheets for various tasks using Help > Cheat Sheets > ARM …, for example importing the example

projects. (But we won't be following those cheat sheets here.)

page 4 of 99

Bare-metal Debug and Trace (U-Boot)

First we are going to debug the U-Boot bootloader. It is some of the earliest code run by the processor after

reset. It is responsible for initializing the hardware (for example, power, clocks, memory controllers, etc.),

reading the kernel into RAM, setting up the kernel parameters (for example, the kernel command line, also

known as the bootargs) and jumping to the kernel. U-Boot is a “bare-metal” program which means that it

runs directly on the processor and does not use or need an operating system “beneath” it. U-Boot does not

use the MMU and runs on a single core even in a multi-core system. U-Boot also has a command-line

which we will use during our debugging.

Setting up your own target: Download, build and setup U-Boot

If you are running this workshop on your own host you will need to do some setup to build and debug U-

Boot. You can download the U-Boot sources using the Ubuntu package manager on the target and then build

it on the target. Once built, the sources and symbols can be copied to your host and used during the debug

session. To complete your own setup please follow the U-Boot download and debug setup instructions in the

appendix on page 94.

Connect the hardware

 Connect the DSTREAM unit to its probe box using the 100-conductor ribbon cable. (Be sure to

count the conductors! (Not really.))

 Connect the DSTREAM unit to the host using a USB cable. The DSTREAM can also be connected

via Ethernet. In this workshop we will use USB since we will be using Ethernet to connect to the target

for application debug later. The DSTREAM is used to control the target when debugging at the bare-

metal (U-Boot) and kernel level.

 Connect the DSTREAM power (5V). Do not connect the target’s power yet because we don’t want it

to boot yet.

 Connect the JTAG port of the Snowball board to the port labelled ARM JTAG 20 on the DSTREAM

probe box using a 20-conductor ribbon cable.

 Connect the 5V power cable to the target, but don’t press the blue power button yet. Connect the

serial port of the Snowball board to the host using a USB cable and connect the Serial view. See the in

the appendix on page 92.

When the power button is pressed the target will run Xloader and U-Boot from the builtin eMMC. U-Boot

will write various messages to the serial console and, if no input is given within a few seconds, load and

boot the Linux kernel. To debug U-Boot, we want to stop it at its command line.

 With the Serial view already connected, press the blue power button to boot the board.

U-Boot should begin printing.

 Quickly type space or return in the Serial view to stop U-Boot at its command line:

page 5 of 99

If nothing happens, try disconnecting and reconnecting the target power again. When you remove power

from the Snowball, the serial connection will be broken and the Serial view will begin repeating Bad file

descriptor in nativeavailable. Click the Disconnect button () in the Serial view, reconnect the

power (without pressing the power button) and then click the Connect button ().

You can try typing help and other U-Boot commands, but leave U-Boot at the command line when you

finish experimenting.

Debugging U-Boot on the target

In this section we will use DS-5 to load the U-Boot we built on the target. We will load U-Boot into the

target’s RAM as the binary on the eMMC may be different from the one that we’ve built and have debug

symbols for.

Next we will examine or create a debug configuration so that DS-5 can connect to the target.

 Change to the DS-5 Debug perspective Window > Open Perspective > Other… > DS-5 Debug

 Choose Run > Debug Configurations... then expand DS-5 Debugger

The U-Boot debug connection may already have been created for you in which case you can just select it,

examine the settings, choose the DSTREAM unit and set the DTSL Options. (If the Gnometris and Xaos

example projects have already been imported, you will see four debug configurations, gnometris-

gdbserver-example, gnometris-RTSM-example, xaos-gdbserver-example and xaos-RTSM-example in

the Debug Configurations dialog which we are going to ignore for now.)

 If there is no U-Boot debug connection as a child of DS-5 Debugger, then create one: select DS-5

Debugger and click the New launch configuration button () to create a new debug configuration.

(You can also double-click DS-5 Debugger or right-click it and choose New instead.)

 Give the debug configuration a name, I used U-Boot.

In the Connection pane of the debug configuration we need to specify the platform and choose the

DSTREAM. The plaforms list contains the large number of platforms that DS-5 supports by default

arranged as a tree by vendor.

 Type sno in the Filter platforms filter box so that the only the matching platforms are shown.

 Expand CALAO Systems > Snowball >Bare Metal Debug in the platforms list.

 Select Debug Cortex-A9_0 via DSTREAM/RVI.

page 6 of 99

 Click the Browse button and choose the DSTREAM unit and click OK. Your Connection number

will be different than shown.

The tracing options are configured in a separate DTSL configuration. “DTSL” stands for Debug and Trace

Services Layer. We’ll enable tracing on core 0.

 Click the DTSL Options Edit… button to open the DTSL Configuration Editor dialog box.

 Click the Add button () to create a new DTSL configuration.

 Give the new DTSL configuration a name, I used trace-core-0.

 In the Trace Buffer pane, change the Trace capture method to On Chip Trace Buffer (ETB). The

Snowball doesn’t have a connector for external (TPIU) trace.

 In the Cortex-A9 pane, check Enable Cortex-A9 core trace and uncheck Enable Cortex-A9 1

trace since U-Boot only runs on core 0.

 Check Cycle Accurate so that the trace data will include cycle count (although this will mean that

fewer instructions fit into the ETB).

page 7 of 99

You can leave Enable PTM Context IDs checked. U-Boot doesn’t change the context ID so how we

set it won’t matter. You can disable Cycle Accurate trace if you want more instructions to fit into the

ETB. It’s also possible to setup an initial trace capture range to limit what instruction addresses are

captured, but we don’t want to do that.

 Click OK in the DTSL Configuration Editor dialog box.

The Debug button is disabled because the debug configuration is not yet complete. The problem is

explained near the top of the dialog: [Debugger]: Debugging from a symbol, but no symbol files defined

in the Files tab. We will fill in the missing details in the other panes.

The Files pane of the debug configuration allows us to specify an application to download and symbols

(debug information) to load. We’re going to reload the U-Boot on the target so that we can be sure the U-

Boot on the device matches the symbols we have.

We need to specify the location of the u-boot binary containing symbols (debug information):

 In the Files tab under Application on host to download, click the Workspace… button and select

the u-boot binary from the project u-boot-ux500/u-boot-ux500-2009.11/u-boot

 Check the Load symbols checkbox:

In the Debugger pane of the debug configuration:

 Choose Debug from entry point so that DS-5 will load U-

Boot and set the program counter to the entry point but not start

running it.

 We need to disable the I-Cache for this example. Check the

Execute debugger commands and enter
set var $CP15_SCTLR.I = 0

You can specify debugger scripts and/or commands to execute as

part of the connection process. The dialog fields have tooltips

that explain at what point during connection the scripts and

page 8 of 99

commands are executed. An example would be to use the Execute debugger commands field to stop

the target and load the debug symbols or disable some breakpoints and enable others. The script files

can be written in either the simpler, gdb-like, DS-5 command line scripting language (.ds files) or the

more powerful and complex scripting language Python (.py files).

You can specify the host working directory which affects certain debugger commands that access the

host file system (for example dump, log and source). The default is fine.

You can use the Paths list to specify directories that DS-5 should search for source files but we don’t

need to use it for U-Boot and can just leave it empty.

The Arguments and Environment panes don’t apply to bare-metal debugging, so just leave them blank.

The Event Viewer pane is used to configure display of any ITM or STM information in the trace stream.

We won’t be using it on our target, so just leave it blank, too.

 Click the Debug button. If the Debug button is disabled then Eclipse will put a message explaining

why at the top of the Debug Configurations dialog. If the Confirm Perspective Switch dialog appears

check Remember my choice and click OK.

DS-5 will connect to the target and load U-Boot into memory. The program counter will be set to the entry

point of the image. You can see the target connection in the Debug Control view.

[When U-Boot runs you need to type a character to the serial port to stop it from autobooting Linux. In some

cases the default boot delay can be very quick, and before you blink the Linux kernel boots. If this happens

the debug connection will probably stop on an exception with the PC near address 0xFFFF0000 with the

MMU on, which will prevent the debugger from loading the u-boot image. If this happens you need to

disconnect the debug configuration, unpower and repower the board, re-establish the serial connection, push

the blue button and try to be quicker.]

We can place a breakpoint in the main_loop function to stop boot process and change the boot delay time:

 In the Commands view type thbreak main.c:399 and press return to place a temporary hardware

breakpoint in the function main_loop. Later we’ll see how to set breakpoints in other ways.

page 9 of 99

 Click the Continue button () in the Debug Control view. The debugger will stop on line 399 in

main.c. Because the breakpoint was temporary it was deleted automatically.

 Find the variable bootdelay in the Locals folder of the Variables view and change its value to 60.

Or you can type set var bootdelay = 60 in the Commands view and press return.

 Click the Continue button ().

Presto, in the serial console you should now see U-boot counting down from 60 seconds. This should be

ample time to stop U-Boot from auto booting Linux.

 In the Serial view, press any key to stop U-Boot before it finishes counting down.

In the some of the steps above, we used the Commands view interface to control the debugger. Don’t worry

you don’t need to remember all these commands. All the commands can be done through the DS-5

Debugger UI and we will go through them in the remainder of the workshop. And the command-line has

pop up Content Assist help available, which we’ll also show later.

 Send a few characters to the target, but not return, by typing them into the Serial view. We’ll see

them in the debugger in a minute.

 Click the Interrupt button () in the Debug Control view to stop the target:

page 10 of 99

Now we can see that we’ve stopped in the function pl01x_getc, which seems reasonable as u-boot is

waiting for serial input. You may have stopped on a different instruction.

[If you see no functions in the stack and the PC is at an address like 0xC00xxxxx then you have not stopped

in U-Boot and the kernel has booted. Reset the target (power off and on) and stop U-Boot from booting the

kernel by typing to the Serial view.]

The current PC location is shown by an arrow () in the left margin of both the source and Disassembly

views and by the dark green highlighting. The light green highlighting in the Disassembly view shows all

of the assembly instructions that correspond to the current source line.

If the processor supports debugging both TrustZone worlds then memory addresses for Normal world are

prefixed with N:, while addresses in the Secure world are prefixed by an S:. If the processor doesn’t support

TrustZone, or has been configured so that it is only possible to debug Normal world then the addresses will

not have a prefix.

Notice how the actions that you have performed so far, like interrupt have been recorded in the

Commands and History views. If you want to automate that part of connecting to the target, you could

copy them and paste them into the Execute debugger commands field of the Debugger pane of the debug

connection.

Quick tour of the debugger

Now we’ll show a few of the features of the various debugging views. Most of them will also be discussed

in more detail in the application debugging section later.

In the Debug Control view we can see the call stack with the frame of the current function at the top and its

caller below it and its caller’s caller below that and so on. You can see in the Variables view that the

current function, pl01x_getc, has no local variables.

Let’s do some stepping:

 Click the Step (into) button (; F5) in the Debug Control view.

This will continue the program until the current source line is finished. That will happen when you type a

character to the target, so

 Type a character to the Serial view.

page 11 of 99

The target stops again on the data = IO_READ... statement because the step has finished.

 Click the Step Out button (; F7). This will cause the target to continue until pl01x_getc returns

to its caller, serial_getc.

The stack frame of pl01x_getc is no longer shown in the Debug Control view. The value returned will be

in register R0.

 Look in the Registers view and expand the Core registers folder. The value of the character you

typed is in R0.

 The ASCII number in hex is displayed in R0. You can quickly display the character by adding the

expression (char)$R0 to the Expressions view or typing print /c $R0 in the Commands view

console. (The character I typed was D)

It is also possible to step by assembly instruction instead of by source line by using the toggle button (;

). You can try it if you want, but set it back to stepping-by-source-line mode with the ‘s’ dark ()

afterwards.

 Click the stack frame of cread_line to select it.

Now we can see the context of cread_line in the various views. The PC arrow and highlighting in the

source and Disassembly views shows the instructions that will be executed when we return to this function.

In the Variables view can see the buff variable which points to the text we’ve typed to the target. The

variables view has a Location column that show us that the variable buff is held in register R5 when

readline_into_buffer is executing again but is currently stored in memory (on the stack):

 Right-click the variable buff. You can see choices in the context menu for formatting the variables

is various ways, for example Float and Hexadecimal. There are also menu items to show the variable in

a Memory, Disassembly or Registers view and to show the variable dereferenced in Memory or

Disassembly views. Dereferencing shows what the variable points to instead of showing the variable

itself. Choose Show Dereference in Memory.

page 12 of 99

The memory that buff is pointing to is displayed in a Memory view. Because it’s not possible in C to know

how many bytes buff is pointing at, only one byte is shown.

 Change the Memory view size from sizeof *(buff) to 16

You can edit the memory either in hex or as characters. Making changes will not have any immediate effect

on what is shown the Serial view, but it will change what U-Boot thinks you have typed when you press

return.

 Click the stack frame of parse_stream to select it.

 Set a breakpoint on line 2959 of hush.c by double-clicking on the line number in the left margin.

You can see the breakpoint () appears in both the source and Disassembly views. The breakpoint is also

listed in the Breakpoints view where it’s possible to set conditions and other fancy stuff that we see later.

Trace view

 If the Trace view is not already open, open it by choosing the Window > Show view > Trace menu

item.

The Trace view already has some instructions in it, but since U-Boot has just been looping in pl01x_getc

it’s not very interesting. Let’s collect some more interesting trace to examine in the Trace view.

 Click the Continue button ().

The target continues waiting for you to type the rest of the U-Boot command.

page 13 of 99

 Type the return key into the Serial view.

The target hits the breakpoint in parse_stream.

 Click on the tab of Trace view to bring it to the front.

By default, the Trace view collects all instructions executed up to the capacity of the1 trace buffer. Because

the target has no external trace port, we’re using an 8KB on-chip embedded trace buffer (ETB). The ETB is

used as a circular buffer and holds a few 10s of thousands of instructions depending on the actual instruction

sequences. If the trace buffer overflows (wraps) then only the most recent instructions will be shown when

the target stops. If you need more control over when trace is collected, you can place trace start and stop

points or trace trigger points, similarly to the way you can place breakpoints.

The Trace view shows a page of trace data at a time. The size of the page is initially 10,000 instructions but

it can be set to any size between 1,000 and 1,000,000 instructions by using the Set Trace Page Size… menu

item in the Trace view’s drop-down menu (). You can use the buttons to move to the First (), Previous

(), Next () or Last () page of trace. The First and Last buttons also change the order of the trace

indices.

The Trace view is divided into three panes: Trace, Properties and Ranges:

 The Trace pane shows a history of functions and instructions that were executed in the current

page of trace data. It is divided into two sections: on top is the Navigation section and on the

bottom is the Trace section. These sections can be hidden or displayed using the drop-down

menu (). You can drag the horizontal divider up and down to resize them.

 The Properties pane shows details of the trace capture and includes a Stop Trace Capture on

Trigger checkbox. You may need to grow the view vertically to see it all.

 The Ranges pane allows you specify address ranges to limit tracing. You may need to grow the

view vertically to see it all.

The Navigation section, at the top of the Trace pane, shows which functions were executed in the current

page of trace data. It shows functions sorted by number of instructions executed and colored timelines of

page 14 of 99

the execution. You can see the transfer of execution between functions:

You can zoom the Navigation section in and out in using the zoom drop-down menu ().

 Use the zoom drop-down menu () to change to 1:1 resolution and scroll all to the right end

(most recent).

Now every instruction in the trace is shown individually in the timeline:

In order to show more instructions the trace data is not cycle accurate and does not include memory access

addresses or values.

Cortex-A9 trace data (PTM) does not include cycle count information for individual instructions (and by

default, none at all) so the coloring represents the instruction class (memory access, branch, ALU, ...). The

Cortex-A9 trace hardware does not allow tracing memory accesses (addresses or values).

The Trace section, at the bottom of the Trace

pane, shows the traced functions and

instructions in the order they were executed.

The Cycles column shows zero for most

instructions. This is because of the way PTM

works: it only produces cycle counts on

“waypoints” (essentially conditional or

unpredicted branches) which gives the number

of cycles since the previous waypoint. The

cycle counts are much higher than expected here

since the caches are disabled and peripherals

(UART) are being accessed.

 On Cortex-A9, conditional branches (and non-PC-relative branches) that are skipped because their

condition codes are not met are shown with . The PTM trace information does not record whether other

conditional instructions (for example ADDNE) are skipped or not.

The last instruction in the Trace section (index 0) is the last instruction executed before the target stopped

on the breakpoint (which is shown by the HALTEXCP. At index -4, we can see that the file_get function

returned to parse_stream.

 Click on the MOV r5,r0 instruction at index -2.

Notice that the corresponding line of source code becomes highlighted in blue the source view. Also a

cross-section marker is shown in the corresponding point in the Navigation pane timeline.

page 15 of 99

 Click and drag up and down in the Trace pane. Notice how both the navigation cross-section marker

and blue highlighting in the source view follow along. You can also move the selection around the

Trace pane with the up- and down-arrow, page-up and -down, home and end keys.

 Click and drag right and left in the Navigation pane. Notice again how both the navigation cross-

section marker and blue highlighting in the Trace pane and source view follow along. You can also

move the cross-section marker around the Navigation pane with the right- and left-arrow keys.

You can use the toggle button (;) to change from showing both functions and instructions to

showing functions only

 Double click breakpoint indicator () in the left margin of hush.c to delete the breakpoint. You can

also delete the breakpoint by selecting it in the Breakpoints view and typing the delete key or using the

Delete button ().

Registers view

When doing bare-metal or kernel debugging via DSTREAM, you can

use the Registers view to access all of the registers of the ARM

processor, including other modes (IRQ, FIQ, ...) and the system

control coprocessor (CP15). For example, you can find out what the

current mode is by expanding the CPSR register in the Core folder

and looking at the M (mode) field. We can see that U-Boot is using

SVC (Supervisor) mode. You could also change the processor mode

using the drop-down menu, but that’s not a good idea.

Watchpoints

A watchpoint stops the target when a particular memory location is

read or written. (Another name for them is “data breakpoints”.)

Before U-Boot starts the kernel it writes the kernel parameters into

RAM at address 0x00000100 as we’ll see later. Let’s place a

watchpoint on that address so that we can find the code that does the

writing.

 Bring the Memory view to the front and type 0x00000100 in the Add7ress field.

 Right-click on the first word and choose Toggle Watchpoint from the context menu.

The Add Watchpoint dialog opens:

page 16 of 99

 Choose WRITE or ACCESS as the Access Type and click OK.

You can now see the watchpoint in the Memory view and the Breakpoints view.

 Click the Continue button ().

U-Boot tries to process the command you just typed and prompts for a new one. The watchpoint will trigger

later when it writes the kernel parameters in to RAM.

Functions view

Now we’ll arrange to stop after U-Boot has loaded the linux kernel and is about to transfer control to it in

the function do_bootm_linux.

 Click on the tab of Functions view to bring it to the front:

The Functions view shows information about all of the functions in the debug symbols we have loaded

including the start and end addresses. You can change the sorting of

the Functions view by clicking on the column headings. You can use

the Filters... command in the view’s drop-down menu () to control

which images and compilation units are shown.

 Click on the Search button () of the Functions view to open

the Search Functions dialog then type some of the function’s

name, select do_bootm_linux and click OK:

The entry for do_bootm_linux is selected. We can set a hardware

breakpoint on it even while the target is running.

 Right-click on the entry for do_bootm_linux and choose

Toggle Hardware Breakpoint:

Notice that the entry for do_bootm_linux now shows that there is a hardware breakpoint set (). The

breakpoint is also shown in the Breakpoints view.

There are also Search buttons () in the Variables, Expressions, Registers, Disassembly and Memory

views.

page 17 of 99

 Type the command boot followed by the return key into the Serial view to tell U-Boot to load and

boot the Linux kernel.

The target will stop at the beginning of do_bootm_linux. If you didn’t delete the breakpoint in

parse_outer, the target will stop there first and you should press the Continue button to get to

do_bootm_linux. By the time U-Boot gets to do_bootm_linux it will have already loaded the kernel into

RAM at some physical address and written some details to the console. All addresses are physical because

U-Boot hasn’t turned on the MMU.

Line 142 of of bootm.c is where U-Boot transfers control to the kernel.

 Click on line 142 to move the selection there; then right-click on the line and choose Run to

Selection from the context menu. Be sure to move the selection to line 142 first.

We don’t reach, line 142 though. It turns out that our watchpoint triggers first in the function

setup_start_tag (which has been inlined into do_bootm_linux) and it constructing the kernel parameters.

The temporary breakpoint on line 142 that was created by Run To Selection is still present (and can be seen

in the Breakpoints view. Get information about a breakpoint by hovering the cursor over it.)

 Click the Continue button () and the target will reach line 142.

From the source code we can see that U-Boot is going to pass three parameters to the kernel: zero (in R0),

the machine ID, machid, (in R1) and a pointer to the kernel parameters, bd->bi_boot_params (in R2). You

can see the value of machid by hovering the mouse over it. You can also see the value of the variables in

the Variables view. The last parameter is a pointer to the kernel parameters in memory which contains the

kernel command line (bootargs) and other information.

 Select bd->bi_boot_params in the source then right-click on it and choose Show Dereference in

Memory:

In the Memory view (you may need to scroll down) we can see the kernel command line string in the

middle of the kernel parameters preceded by the tag value 0x54410009: console=ttyAMA2,115200n8

vmalloc=256M root=/dev/mmcblk0p3 rootwait.

 Click on the tab of the Disassembly view to bring it to the front.

If you scroll the Disassembly view up a few lines you can see that the function setup_end_tag has been

inlined into do_bootm_linux. This is indicated by the lable setup_end_tag +0x10 [inlined] and the

green color of the addresses. Now we’re going to step carefully by assembly instructions.

 Click the stepping by toggle button in the Debug Control view so that it is in stepping-by-

instructions mode with the ‘i’ dark ().

page 18 of 99

 Click the Step (into) button (; F5) three times until the PC arrow is on the BLX R3 instruction that

transfers execution to the kernel:

 Click on the tab of the Registers view to bring it to the front.

See that R0 contains zero, R1 contains the machine ID and R2 is a pointer to the kernel parameters and R3 is a

pointer to the kernel code (as a physical address). Although the compiler doesn’t know it, the kernel will

never return to do_bootm_linux.

 Click the Step (into) button (; F5) one more time to step to the kernel:

The kernel image that U-Boot loads into RAM is known as uImage. It has a 64 byte header created by the

U-Boot tool mkimage and is followed by a compressed version of the kernel wrapped by a self-decompressor

which is the code we see here and is known as a zImage. The zImage works by decompressing the kernel

code in-place and then jumping back to the beginning again. We’ll set a hardware breakpoint on the first

instruction and continue the target to let the decompression happen.

 Click the Step (into) button (; F5) once to step to the next instruction.

 Right-click on the first instruction of the compressed kernel (0x00008000) and choose Toggle

Hardware Breakpoint. Using a regular software breakpoint won’t work since the decompressor is

going to overwrite this instruction.

 Click the Continue button ().

page 19 of 99

The target stops on the first instruction and shows the decompressed kernel code:

Since we’re done debugging U-Boot we will delete any breakpoints and watchpoints we still have and

unload its debug symbols.

 Click the Delete All button () in the Breakpoints view.

 Click the stepping by toggle button in the Debug Control view so that it is back in stepping-by-

source-line mode with the ‘s’ dark ().

 Close the various U-Boot source views, if you want to get them out of your way.

Now we’re ready to start debugging the kernel.

page 20 of 99

Kernel and module debug

When U-Boot transfers execution to the kernel the MMU is still off and all addresses are physical addresses.

Building the MMU tables and turning on the MMU are some of the first things that the kernel does, but it

can still be useful to debug the kernel before the MMU is on.

Setting up your own target: Download the Linux kernel symbols and sources

If you are running this workshop on your own host you will need to do some setup to debug the Linux

kernel. You can download the kernel sources and symbols using the Ubuntu package manager on the target

and then build the kernel module example on the target. Once built, the sources and symbols can be copied

to your host and used during the debug session. To complete your own setup please follow the instructions

in the appendix Linux kernel download and debug setup in the appendix on page 95; and Kernel module

debug (modex) build and setup in the appendix on page 97.

Debugging the kernel before the MMU is on

There is no requirement to debug the kernel before the MMU is on unless you’re trying to find a bug there

or are an exceptionally curious person. I’m guessing you’re exceptionally curious so we’ll debug it just a

bit. Similarly, if we wanted to get to this point without bothering to debug U-Boot first we could just set a

hardware breakpoint at 0x00008000 and let U-Boot run until we reached it twice (“twice” because of the

decompression).

 Bring the Registers view to the front; expand the CP15 and

System folders and the CP15_SCTRL (System Control)

register.

You can see that that CP15_SCTRL register has the M bit clear

(“Disabled”) so the MMU is currently disabled.

Debugging the kernel before it turns on the MMU is very similar to

debugging U-Boot, but because the kernel debug symbols in the

vmlinux file are the virtual addresses we need to load them with an

offset so that they are valid with the MMU off: The virtual address

of the first instruction is 0xC0008000 and the physical address is

$pc so the offset needed is $pc-0xC0008000 (or 0x00008000-

0xC0008000 if the PC is somewhere else).

 Choose Load... from the Debug Control view’s

drop-down menu () and then choose Load Debug

Info; click the Workspace... button then select
kernel\vmlinux-3.3.0-1000-

ux500.debug_only, which has the kernel debug

symbols; put $pc-0xC0008000 in the Load Offset

field. If you’ve stopped the target at a different

location than the first instruction of the kernel you’ll

need to use 0x00008000 instead of $pc. Click the

OK button:

The Disassembly and source views update to show the kernel symbols and sources. Most of the early

kernel source is written in assembly code.

Because we chose Load Debug Info the U-Boot debug symbols that we had loaded before were discarded.

The command that appears in the Commands view is file instead of add-symbol-file. We could easily

copy that command to a script if we needed to do it often.

page 21 of 99

You may need to set a substitute path if the source code for the kernel is not resolved. For example you

should see

 Click the Set Path Substitution button in the source view

 Select the Image Path as /build/buildd/linux-ux500-3.3.0/

 Use the Workspace… button to select the Host Path as ${workspace_loc}\kernel\igloo-

kernel\ by choosing the igloo-kernel directory

You can now step and do the normal debugging things to see what the kernel is doing before the MMU gets

turned on. We’ll just set a breakpoint on the function __turn_mmu_on which is where the kernel, well, turns

the MMU on. In the Functions view, the address of __turn_mmu_on should be 0x00625430 If the value is

different then you may have mistyped the Load Offset. Another reason that the value could be different is

if you’re using a different version or configuration of the kernel. If the address is not 0x00625430 then

execute the command file in the Commands view to discard the debug symbols and then reload them.

 Use the Functions view to put a hardware breakpoint on __turn_mmu_on or, for variety, use the

command hbreak __turn_mmu_on in the Commands view.

 Click the Continue button to run to it ().

When we get to __turn_mmu_on the MMU is still off, but register R13 has the virtual address of the first

instruction executed after the MMU is turned on (usually it holds the stack pointer). If you want, you can

look in the Trace view to see what has been executing recently. You may notice that the symbol displayed

in the Dissassembly view is not __turn_mmu_on. The reason is that at this location there are two symbols,

and the debugger is displaying the first (from line 450).

[If, instead of reaching __turn_mmu_on, the debugger stops with the PC near address 0xFFFF0000 (that is, in

the exception vectors) then the breakpoint has been missed and the kernel has started executing and the

debugger has stopped the target on a Data Abort or other exception. The Serial view will show the kernel

message output. You’ll need to disconnect, reset the target, stop U-Boot from launching the kernel by

typing to it and reconnect the U-Boot debug configuration.]

 Delete the breakpoint that is on __turn_mmu_on because when the MMU is turned on it will be in the

wrong place and will only be able to cause problems.

 Place a temporary hardware breakpoint at the address that R13 is pointing at, by typing the command

thbreak *$r13 in the Command field of the Commands view and pressing return. (Actually the * is

optional.)

page 22 of 99

 Click the Continue button ().

When the target stops the MMU is on but the symbols we loaded with an offset are now wrong. The

breakpoint gets deleted when it is hit because it’s a temporary breakpoint. You can see that the M bit in

CP15_SCTRL in the Registers view is now set (“Enabled”).

 Reload the kernel symbols without an offset.

Choose Load... from the Debug Control view’s

drop-down menu () and then choose Load

Debug Info; click the Workspace... button then

select kernel\vmlinux-3.3.0-1000-

ux500.debug_only, which has the kernel debug

symbols; don’t put any value in the Load Offset

field and then click the OK button.



 Use the Functions view to put a breakpoint on start_kernel or, for variety, use the command

break start_kernel on in the Commands view.

 Click the Continue button ().

The start_kernel function initialises the remainder of the Linux kernel after the MMU is turned on. The

majority of the kernel components are initialised in this function. As the memory map for the Linux kernel is

now initialised we can enable the DS-5 Linux kernel operating support to aid our debug session.

Debugging the kernel initialisation after the MMU is on

So far we’ve been debugging using the U-Boot bare-metal debug configuration that we created. This works

for the early kernel because the kernel itself is essentially a bare-metal application; that is, the kernel does

not rely on any lower-level operating system.

Now it’s time to examine or create a debug configuration for the kernel when the MMU is on.

 With the target still stopped, click the Disconnect From Target button () in the Debugger

Control view to disconnect the U-Boot debug configuration.

 Choose Run > Debug Configurations... then expand DS-5 Debugger.

The Kernel debug connection may already have been created for you in which case you can just select it,

examine the settings and choose the DSTREAM unit.

page 23 of 99

 If there is no Kernel debug connection as a child of DS-5 Debugger, then select DS-5 Debugger and

click the New launch configuration button () to create a new debug configuration. (You can also

double-click DS-5 Debugger or right-click it and choose New instead.)

 Give the debug configuration a name, I used Kernel.

In the Connection pane of the debug configuration we need to specify the platform and choose the

DSTREAM.

 Type sno in the Filter platforms filter box so that the only the matching platforms are shown.

 Expand CALAO Systems > Snowball > Linux Kernel and/or Device Driver Debug in the

platforms list.

 Select Debug Cortex-A9_0 via DSTREAM/RVI.

We choose kernel-only trace because decoding the trace information requires reading the instructions from

the target which is not always possible for a Linux application that isn’t the current process.

 Click the Browse button and choose the DSTREAM unit and click OK. Your Connection number

will be different than shown.

We’ll leave the Files pane of the debug configuration blank so that we can be sure that the target is stopped

when we load the debug symbols. We’ll load them in a script in the Debugger pane. The kernel was (and

can only be) built on a Linux host. As we are using a Ubuntu image we can use the Linux package manager

to get the symbols for the Linux kernel.

In the Debugger pane of the debug configuration:

 Choose Connect only so that DS-5 will just attach to the target which is already running the kernel.

 Check Execute debugger commands and type these commands into the field:
 interrupt
 add-symbol-file "kernel\vmlinux-3.3.0-1000-ux500.debug_only"

page 24 of 99

 In the Paths list select Source search directory as ${workspace_loc:/kernel/igloo-kernel} by

clicking on the Workspace… button and choosing the igloo-kernel directory:

The Arguments and Environment panes don’t apply to kernel debugging either, so just leave them blank.

And again, we won’t be using the Event Viewer pane, so just leave it blank, too.

 Click the Debug button. If the Debug button is disabled then Eclipse will put a message explaining

why at the top of the Debug Configurations dialog.

When the debugger connects, we can now see that we are stopped at start_kernel:

This kernel debug configuration will behave in a similar way to the bare-metal debug configuration that we

have been using so far but will also allow us to see the processes and threads after we’ve loaded the kernel

debug symbols. Another difference is that, by default, when doing bare metal debug DS-5 intercepts

processor exceptions like Data Abort and in kernel debug it lets the target handle them. The interception

behaviour can be changed by using the Manage Signals command in the Breakpoints view’s drop-down

menu ().

The extra orange underlining in the kernel source views is due to the C/C++ indexer not fully understanding

the include paths and macros used to build the kernel. You can disable it in Window > Preferences >

General > Annotations > C/C++ Indexer Markers.

There are no processes yet, but we can step and debug the rest of the kernel with the MMU on. In the

Breakpoints view, you can also see that DS-5 has set some debugger internal breakpoints so that it can

track the loading and unloading of kernel modules. Next let’s debug some of the kernel initialisation.

page 25 of 99

 Double click on side bar next to line 495 in main.c to set a breakpoint

 Click the Continue button ().

On line 494 a kernel printk function was executed. These kernel messages are normally directed to the

serial port to aid with the debug of kernel start-up. As we are still at a very early stage in the kernel boot

process the serial port driver for the kernel is not initialised yet. For that reason the message is not displayed

over the serial port connection yet.

You can use the info command to get information about the kernel even if the target doesn’t have a serial

console. You can use Content Assist (Ctrl+Space) to get help on commands as you are typing them.

INFO: In Windows, if foreign language support is enabled, the Ctrl+Space key combination is used to

change between languages inside a text box (for example English to Chinese). You can change the key

combination to something else in Eclipse by going to Window > Preferences > General > Keys > Content

Assist to change the key combination to something else.

 Type info into the Command field of the Commands view and then type Ctrl+Space. This

activates the Content Assist which shows the possible completions and help for each. You can use the

mouse and arrow keys to choose which alternative you want:

 Try the info os-version and info os-log commands. The info os-log command shows the

kernel message buffer. (printk; dmesg);

 Click the Continue button () and let the target run.

One of the next initialisation sequences of the Linux kernel is to boot the secondary processors and assign

kernel threads to the cores. We will disconnect and then reconnect DS-5 with an SMP connection:

 Click the Disconnect From Target button () in the Debug Control view to disconnect from the

running target.

 Right-click on the Kernel debug configuration in the Debug Control view and choose Debug

Configurations... to edit the configuration.

 Type sno in the Filter platforms filter box so that the only the matching platforms are shown.

page 26 of 99

 Change from Debug Cortex-A9_0 via DSTREAM/RVI to Debug Cortex-A9x2 SMP via

DSTREAM/RVI.

We will setup the tracing options in a DTSL configuration.

 Click the DTSL Options Edit… button to open the DTSL Configuration Editor dialog box.

 Click the Add button () to create a new DTSL configuration.

 Give the new DTSL configuration a name, I used trace-

both.

 In the Trace Buffer pane, change the Trace capture

method to On Chip Trace Buffer (ETB). The Snowball

doesn’t have a connector for external (TPIU) trace

 In the Cortex-A9 pane, check Enable Cortex-A9 core trace and Cycle Accurate so that the trace

data will include cycle count (although this will mean that fewer instructions fit into the ETB).

 Check Trace capture range and set the range to 0xBF000000-0xFFFFFFFF which is the address

range of the kernel and kernel modules.

 Click OK in the DTSL Configuration Editor dialog box.

 Click the Debug button to reconnect to both processors on the target.

In the Debug Control view we can now also see the processes and threads instead of just the cores that we

saw when debugging the bare-metal U-Boot.

 Expand the All Threads folder in the Debug Control view to see all the processes and threads:

page 27 of 99

You can expand each thread to see the thread’s stack. You can change the debugger’s focus from one thread

to another by clicking on the different threads and stack frames. You can change the way child threads are

displayed by choosing Flat or Hierarchical from the Thread Presentation submenu of the Debug Control

view’s drop-down menu (). From the drop-down menu you can also select Always Show Cores to

display the cores () like in bare-metal debugging as well.

Kernel space threads are shown with a () icon and user space threads are shown with a () icon.

Reading the thread information for all threads takes some time, so it's a good idea to leave the All Threads

folder collapsed when you don’t need it.

 Collapse the All Threads folder to hide the non-active threads.

 Click the Continue button () to let the target run so that the kernel can finish booting.

For the next part of the workshop you will need to build the DS-5 kernel module example against the kernel

on your target and copy it back to the host. If this has not been done for you, please see in the appendix on

page 97 about how to set this up.

When the kernel finished booting it will prompt you to login.

 Type ls to the Serial view window to list the files in the current directory.

The file modex.ko is a kernel module that we can debug. Kernel modules are like shared libraries for the

kernel. First, we will load its debug symbols:

 Choose Load... from the Debug Control view’s drop-down menu (); leave Add Symbol File

selected; click the Workspace... button and then choose kernel_module\modex.ko, which has debug

symbols; click the Open button and then click the OK button.

We use Add Symbols File instead of Load Debug Info, because Load Debug Info would discard the

currently load debug symbols (from vmlinux). There will be a warning in the Commands view that

modex.ko is not loaded yet. That’s ok, we will load it soon.

 Look in the Modules view.

We can see that modex is not in the list.

 Type insmod /home/linaro/kernel_module/modex.ko to the Serial view to load (insert) the

module.

There will be a message in the Commands view that the symbols have been loaded and modex now appears

in the Modules view.

page 28 of 99

 Click the Interrupt button () to stop the target.

 Use the Commands view to set a breakpoint by executing the command break modex_write.

 Click the Continue button () and let the target run.

 Type echo A > /dev/modex to the Serial view. The A can be any character you want.

The kernel will call the modex_write function which will process the input after hitting the breakpoint. You

can now step and debug the kernel module.

 Click on line 84, with the call to printk, to move the selection there; then right-click on the line and

choose Run to Selection from the context menu. Be sure to move the selection to line 84 first.

 Look in the Variables view to see that the value of x holds the first character that you echoed.

 Click the Step Over button (; F6) to execute the call to printk.

 See that the printk message appears in the kernel messages, type info os-log in the Commands

view. If the kernel messages are still being directed to the serial port then they will also appear in the

Serial view.

 When you’re finished with your investigations, delete any breakpoints and then click the Continue

button () and let the target run.

 With the target still running, click the Disconnect From Target button () in the Debugger

Control view to disconnect the Kernel debug configuration.

Peripheral Registers

The debugger can also display memory-mapped peripheral registers in the Registers view. DS-5 knows the

peripheral registers for some platforms, but not for Snowball. If the peripheral register descriptions are

available in a standard format (CMSIS-SVD, RVD BCD or Lauterbach PER) DS-5 can import/convert them

to its format (.tcf) and use them. There are a collection of CMSIS-SVD files at http:://cmsis.arm.com. We

don’t have a file to import for Snowball, so will use DS-5’s Target Configuration Editor to create a .tcf

file with a few peripheral registers to show what kinds of things are possible.

Create a new file myregs.tcf in the kernel project.

 Select File > New > Other... (Ctrl+N), expand Target Configuration Editor and select Target

Configuration File; click Next >.

 Select the kernel project; type the filename myregs. If we wanted to be able to reuse the registers in

multiple targets we could choose to create a Peripheral library file (.pcf) instead of a Device file

(.tcf), but that’s slightly more work for a single target so we’ll just use the default, Device.

 Click Finish. The file is created and the Target Configuration Editor opens to the Overview pane.

page 29 of 99

 Double click the myregs.tcf tab to zoom up the editor to fill the whole Eclipse window.

 Fill in MyDevice for the Unique Name for the device (must be a legal C identifier) and type any

descriptive text you want in the Description and Datasheet fields:

The Target Configuration Editor has a number of panes which are used to describe various aspects of the

target: Memory, Peripherals, Register, Enumerations, Group View and Configurations. They are

described on the right side of the Overview pane along with links. There are also tabs along the bottom of

the view for switching panes. You can also navigate a .tcf file using the standard Eclipse Outline view.

We don’t need to create any memory regions so we’ll skip the Memory pane. We’ll start by creating a

peripheral, the RTC (real time clock).

 Click on the Peripherals tab or link to view the Peripherals pane.

.Fill in the details for the peripheral:

 Unique Name: RTC

 Base Address: Absolute (use the drop-down menu)

 Offset: 0x80154000

 Size: 0x1000

 Width: 4 (menu)

page 30 of 99

 Access: Read Write (menu)

The Offset value is the physical address of the peripheral as discovered in the datasheet for the processor.

The graphic view displays the peripheral and its address range.

The Peripherals pane (and the Memory pane) can be viewed either in the default graphic form or as a table.

You can see them as table by clicking the Switch button () at the top. The table view allows copying and

pasting rows and columns much like a spreadsheet.

Now we’ll add registers to the peripheral.

 Click the Registers tab and add these three registers. You need to choose the peripheral in the

Peripheral column before you can choose it for the Base Address. Don’t fill in the Access Size and

Access columns.

The Offset value is the offset from the base address of the peripheral.

This is already sufficient to be able to access these registers, but we’ll go further and create handy bitfield

descriptions for RTC_TCR.

 Select RTC_TCR; click the Edit Bitfield... button () or right-click and choose Edit Bitfield...

from the context menu and enter these bitfields:

Notice the picture of the bitfields at the bottom of the bitfield editor.

Like the peripheral addresses, the bitfield definitions can be discovered from the processor datasheet.

Bitfields can also have an Enumeration which assigns names to values, for example DISABLED=0,

ENABLED=1. Since the interesting bitfield is just one bit wide, we’ll leave creating an enumeration for it

as an exercise to the interested reader. (Hint: create the enumeration then come back to the bitfield editor.)

page 31 of 99

 Close the bitfield editor () and save the file by clicking the Save button (; Ctrl+S). You can

double-click the myregs.tcf tab to zoom it back down. You can close the file if you want.

Now we’ve finished creating the .tcf file and we can add it to our debug configuration so that we can use

it.

 If there is a connected debug configuration then disconnect it ().

 Right-click on the Kernel debug configuration in the Debug Control view and choose Debug

Configurations....

 In the Files list in the Files pane change the popup to Add peripheral description files from

directory; click Workspace... and choose the kernel project which is the parent directory of the .tcf

file we created:

 Click Debug to connect to the target.

When the target is stopped, the Registers view now contains a Peripherals folder which contains the

registers and bitfields we’ve just created.

 Expand the Peripherals and RTC folders and the RTC_TCR register.

We can see the bitfields we created in the RTC_TCR register. You can hover the mouse over a register or

bitfield to see its full name and any text that you put in the Description column in the editor. To use the

timer in the RTC we need to first set the timer load register (RTC_TLR1) to some value and then set the

timer enable bit (RTTEN) in the timer control register (RTC_TCR).

 Set the RTC_TLR1 register to 0x100000 (any reasonably large value will do).

 Then, set the RTTEN bit in the RTC_TCR register to 1. The value of RTC_TCR (which contains

the RTTEN bit) also changes.

When it is enabled, the RTC copies the value from RTC_TLR1 to RTC_TDR and begins counting it down

at a rate of 32KHz. When RTC_TDR reaches zero the RTC copies the value again and repeats.

 Step the target a few times and you will see the RTC_TDR register updating “by itself”.

page 32 of 99

Since the peripheral register has a memory address we can also view it in a Memory view.

 Right-click on the RTC_TDR register and choose Show in Memory from the context menu.

A Memory opens showing the register value. The address is

shown with P: to indicate that it is a physical address.

 Choose Refresh from the Memory view’s drop-down

menu () and see the value changing.

The Memory view also supports timed auto refresh.

 Click on the left part of the Timed auto refresh button () that says “Refresh Off” to open the

Auto Refresh Properties dialog; change the Update Interval to, say, 0.5 seconds and then click OK:

 Now click on the right part of the Timed auto refresh button () to start the automatic refresh. When

you’re finished watching the value change, click it again to stop the refresh.

 When you’re finished with your investigations, click the Continue button () and let the target run.

 With the target still running, click the Disconnect From Target button () in the Debugger

Control view to disconnect the Kernel debug configuration.

Next we’re going to do the application debug and profiling sections. They use an Ethernet connection to the

target and do not use the DSTREAM. You can remove the DSTREAM power and even disconnect it from

the target.

page 33 of 99

Application debug

Starting the X server on the Host

We're going to start the Xming X server on the Windows host so that the Gnometris Linux application

running on the target can open a window on the host. If you are using a Linux host, or you have a monitor,

keyboard and mouse attached to your target, then you don't need to use Xming.

 Start the XLaunch wizard from Start > All Programs > Xming > XLaunch. Choose Multiple

Windows, "Next >", Start no client, "Next >", check No Access Control, "Next >" and click the

Finish button.

Note: Using No Access Control is simple, but insecure. Any machine connected to the same network as

your host will be able to open windows on the host.

When started, Xming will not initially display any window. The only indication that it is running will be an

icon in the Notification area of the task bar.

page 34 of 99

If you have trouble with the target and host communicating and your host is running a firewall you may

need to configure it to allow network traffic from the target (for example, make IP address 169.254.0.100 a

"friend").

Importing Gnometris

We need to import the two example projects distribution and gnometris if they have not been imported

already.

 Look in the Project Explorer view and if distribution and gnometris do not appear there, follow

the instructions for importing them in Importing projects in the appendix on page 87. Also follow the

instructions for changing the Gnometris sources in the appendix on page 89.

If Project > Build Automatically is checked, the gnometris project will be built automatically after it has

been imported. The build produces two files at the top level of the project: gnometris, which is the

application, and libgames-support.so which is a shared library used by the application. These two files

will contain debug information. Copies of these two files with the debug information removed are created in

the stripped subdirectory of the project. The project contains pre-built copies of these four files which will

be overwritten when you build the project. It also contains backup copies of the four files named

gnometris_backup and libgames-support.so_backup which do not get rebuilt. We won’t be using these

backup files.

Connecting to the Target

Next, we'll establish a connection to the target using Eclipse's Remote Systems Explorer (RSE) so that we

can browse its file system and create a terminal connection. The Remote Systems view is part of the DS-5

Debug perspective, so we’ll switch to that perspective now. It’s possible that the RSE connection has

already been created in the Remote Systems view for you.

 Choose Window > Open Perspective > DS-5 Debug. If DS-5 Debug isn’t listed then you are

already in the DS-5 Debug perspective. You can also switch perspectives by using the buttons on the

Perspective toolbar ().

 If the Remote Systems view is not open, you can open it by choosing Window > Show View >

Other... > Remote Systems > Remote Systems in any perspective.

 Click on the tab of the Remote Systems view to bring it to the front.

 We won’t be using the Local connection, so you can collapse it.

 If there is no My Target connection, create one by following the instructions in the appendix on page

90.

 Browse the target's file system; Expand My Target > Sftp files > Root. If the connection has Files

instead of Sftp Files, then the connection was not created correctly and you should Disconnect it, Delete

it and recreate it.

page 35 of 99

 Enter User ID=linaro, Password=linaro; check Save user ID and click the OK button. There will be

a few authentication dialogs; accept them.

You can also expand My Home to browse the home directory of the user, which is /home/linaro for the

linaro user.

You can copy files to and from the target by dragging them between the Remote Systems view and the

Project Explorer view or Windows Explorer windows. As we'll see below, it's also possible to copy files

to the target automatically as part of the debug configuration.

If you want, you can double click a text file on the target, for example /etc/bash.bashrc, and view it or

even edit it in Eclipse – but it's probably best if you don't save any changes unless you are sure that you

know what you are doing.

Now we'll create a terminal connection so that we can execute commands easily on the target. You can

Collapse the Sftp Files to get them out of the way.

 Create a Terminal by right-clicking on Ssh Terminals and choosing Launch Terminal.

This will open a Terminals view in Eclipse that can be used to execute commands on the target. (This is

different from, but confusingly similar to the Serial view). The picture below shows the output from the

example target image included with DS-5. If your target is running a different distribution the output will be

different.

page 36 of 99

You can use Launch Terminal more than once if you want to have multiple terminal sessions to the target.

Debugging Gnometris on the Target

If you’ve just done the U-Boot and kernel debugging some of the following will already be familiar, but the

views are discussed in significantly more detail.

The Gnometris example project includes two debug configurations, gnometris-gdbserver-example, and

gnometris-RTSM-example, for running the application on the Real Time System Model (RTSM). You can

try the RTSM debug configuration later if you want, but we are going to ignore them for now and make our

own. If the Xaos example has already been imported, you’ll also have debug configurations named xaos-

RTSM-example and xaos-RTSM-example which we’re also going to ignore.

Since we are using a Snowball board as our target, we'll create our own debug configuration. The

gnometris debug connection may already have been created for you in which case you can just select the

existing connection and examine the settings.

 Choose Run > Debug Configurations... then select DS-5 Debugger and click the New launch

configuration button () to create a new debug configuration. (You can also double-click DS-5

Debugger or right-click it and choose New instead.)

 Give the debug configuration a name, I used gnometris.

In the Connection pane of the debug configuration we need to specify the platform and IP Address of the

target.

 Type gdbs in the Filter platforms filter box so that the only the matching platforms are shown.

 Expand Generic > gdbserver with NEON > Linux Application Debug in the project list.

 Choose the Download and debug application. My Target will already be the selected RSE

configuration and Use RSE Host and Use Extended Mode will be checked. Leave the Port number as

page 37 of 99

5000.

The Debug button is disabled because the debug configuration is not yet complete. The problem is

explained near the top of the dialog: [Files]: No target download directory details entered. We will fill

in the missing details in the other panes.

In the Files pane of the debug configuration we need to specify the application to download, the target

directory to download it to, the location of the symbols (debug information) and any additional files to

download.

 For Application on host to download, use the Workspace... button to choose the copy of

gnometris in the stripped sub-directory. The symbols are not needed on the target. The unstripped

version will also work, but it will take longer to download and take up more space on the target. Do not

use the gnometris_backup copy because it will not include the changes made earlier.

 Put /home/linaro in the Target download directory. This is the home directory of the root user.

Any other writable directory, like /tmp, would work as well. The application and shared library, which

we'll specify below, will be downloaded to this directory when we start debugging.

We can leave the Target working directory empty. By default the download directory will be used as

the working directory.

 In the first entry in the Files list, choose Load symbols from file and use the Workspace... button to

choose the copy of gnometris with symbols (the copy not in the stripped sub-directory).

 Click the add button () to add a second entry to the Files list.

page 38 of 99

 In the second entry in the Files list, choose Other file on host to download and use the

Workspace... button to choose the copy of libgames-support.so in the stripped sub-directory.

You do not need to add the symbol file for the shared library because the debugger will search for it

when it sees the shared library get loaded at runtime, but you could add another entry to the Files list to

load symbols from the unstripped copy of libgames-support.so and the debugger would use it instead

of searching.

In the Debugger pane of the debug configuration:

We are going to use Debug from symbol so that DS-5 will begin debugging by running the application

and stopping at main.

You can specify debugger scripts and/or commands to execute as part of the connection process. The

dialog fields have tooltips that explain at

what point during connection the scripts and

commands are executed. An example would

be to use the Execute debugger commands

field to disable some breakpoints and enable

others. The script files can be written in

either the simpler, gdb-like, DS-5 command-

line scripting language (.ds files) or the

more powerful and complex scripting

language Python (.py files). But we don't

need to use them, so we'll just leave them

disabled.

You can specify the host working directory

which affects certain debugger commands

page 39 of 99

that access the host file system (for example dump, log and source). The default is fine.

You may need to scroll down or grow the dialog by dragging the lower right corner to see the entry in

the Paths list.

 In the first entry in the Paths list, choose Shared library search directory and use the Workspace...

button to choose the gnometris project directory. The debugger will search this directory for symbols

of shared libraries when they are loaded as the application starts or runs. In our case the debugger will

find the copy of libgames-support.so with symbols there.

In the Arguments pane of the debug configuration:

 Type --display=169.254.0.1:0 (no spaces) in the

Program Arguments field:

The --display=169.254.0.1:0 argument tells Gnometris to open its window on the X server running on

the host. If you want Gnometris to display on the target's own X server, you would use

--display=:0 instead.

We could use the Environment pane to set any environment variables that we needed on the target. For

example we could set DISPLAY instead of using the --display command-line argument. In this case, we

can leave the Environment pane blank.

 Click the Debug button. If the Debug button is disabled then Eclipse will put a message explaining

why at the top of the Debug Configurations dialog. If the Confirm Perspective Switch dialog appears

check Remember my choice and click OK.

DS-5 will download the application and shared library and start running it using gdbserver. Some progress

messages will appear in the App Console view:

The game will start running and stop at main() before it has opened its window. If the game does not start,

there may be error messages in the App Console view that indicate what is causing the problem. The

debugger will look like the screen shot below.

When you create a debug configuration, like gnometris, in the Debug Configurations dialog it also appears

in the Debug Control view. The gnometris-RTSM-example debug configuration that was imported with

Gnometris appears in the Debug Control view. Since we're not going to use it for the time-being, you can

select gnometris-RTSM-example in the Debug Control view and click the Remove Connection button (

). You can also right-click on the configuration and choose Remove Connection from the context menu

. You can also remove xaos-RTSM-example if it’s there. We’ll see later how you could get it back if you

want.

If you want to restart the debug session from the beginning for some reason, you can click the Debug from

main() button () in the Debug Control view. Or you can disconnect and reconnect the debug

configuration:

1. With the debug configuration selected in the Debug Control view, click the Disconnect From

Target button ().

page 40 of 99

2. Click the connect button () to re-connect. You can also double-click the configuration or open

the Debug Configurations dialog, choose the debug configuration there and click the Debug button.

Any breakpoints that were set in the configuration will be remembered between connections.

Detailed Debugging

Because Debug from symbol is set to main in our debug configuration, when the DS-5 Debugger connects

to the gdbserver that it starts on the target, it will stop the application at main.

When the game stops at main it will not have opened its window yet.

Functions view

We’ll use the Functions view to set a breakpoint on BlockOps::rotateBlock() which is called when the

user rotates the current block, by pressing up-arrow.

 Click on the tab of the Functions view to bring it to the front; then click on the Search button ()

to open the Search Functions dialog; type rot as the search text (or any other part of the name

BlockOps::rotateBlock); select BlockOps::rotateBlock(bool) and click OK.

page 41 of 99

The function BlockOps::rotateBlock() is now selected in the Functions view.

 Double click on BlockOps::rotateBlock() to set a

breakpoint on it. The breakpoint symbol () will appear.

Then right-click on BlockOps::rotateBlock(); then

choose Show in Source from the context menu.

We can see that the breakpoint we’ve set is on line 134 of

blockops-noclutter.cpp. We could also use the Project

Explorer view to open the source file blockops-noclutter.cpp by double-clicking on it.

Outline view (another brief digression)

You can use the handy Outline view to quickly navigate the

front-most source view. Clicking on a function name will

scroll the source view so that the beginning of the function is

visible.

The Outline view has a button that toggles between sorting the

view alphabetically (), and showing the list in file order.

There are also buttons that show or hide different kinds of

entries. You can get a tooltip description of the buttons by

"hovering" the mouse pointer over them.

Breakpoints

page 42 of 99

You can also set a breakpoint by double-clicking in the left margin of a source or disassembly line where the

breakpoint symbol () will appear. You can delete a breakpoint by double-clicking it, too.

 Set a breakpoint by double-clicking in the left margin on line 297 in

BlocksOps::generateFallingBlock(). This function is in the same file, blockops-noclutter.cpp.

You can go directly to a line by number by using the Navigate > Go To Line... (Ctrl+L) command.

BlocksOps::generateFallingBlock() is called when Gnometris wants to create a new block

Breakpoints view

There is a list of the current breakpoints in the Breakpoints view

Besides the breakpoints you’ve set, you can see the debugger internal breakpoints that DS-5 uses.

(Possibly) Fun things to do with breakpoints in the Breakpoint view

 You can disable each breakpoint individually without removing it by unchecking it. When a

breakpoint is disabled it will be displayed as hollow.

 There is also a button to globally skip all breakpoints (). The individual enable status is

remembered while the breakpoints are globally skipped.

 There are buttons to delete individual breakpoints () and delete all breakpoints ().

 There is also a button () that will open the source file(s) of the selected breakpoint(s). Double-

clicking a breakpoint in the breakpoint view will also open its source file.

 There is a Breakpoints view drop-down menu (). You can use the commands in it to import and

export the breakpoints from/to an XML file. You can control the sorting of the Breakpoints view.

 You can use copying (Ctrl+C or right-click) in the breakpoints view to get a text list of the selected

breakpoints.

 You can paste or drag text into the breakpoints view to set breakpoints. For example, you can select

the name of a function being called in a source view and drag it to the breakpoints view to set a

breakpoint.

 You can also set a breakpoint by dragging a function from the Outline view into the Breakpoints

view.

New views, linking and multiple configurations

You can choose New Breakpoints View in the Breakpoints view’s drop-down menu to create a new

breakpoint view. Most views have a similar command. There are a few reasons why you might want to do

this. Some views, for example the Memory view can be set to show different regions and you might want

to see multiple Memory views at once. Some views, like the Variables view can be “frozen” and you might

want to see some frozen versions and an unfrozen version at the same time.

The reason you might want more than one Breakpoints view is different. Although we won’t do it in this

workshop, DS-5 Debugger can have multiple debug configurations running at the same time on the same or

different targets. The multiple debug configurations and their threads and stacks appear in the Debug

Control view. By default the other views change the information that they are displaying according to

which debug configuration is currently selected in the Debug Control view. This is shown by Linked: in

page 43 of 99

the link menu near the top of each view . You can use this menu to change a view so

that it “sticks” with one debug configuration instead of changing to show the information about the currently

selected configuration. So if you had two configurations you could use a second Breakpoints view to see

the breakpoints in both configurations at the same time.

You can reset all the views to the default Linked: setting by using the Reset DS-5 views to Linked menu

item in the Debug Control view’s drop-down menu ().

More ways to set breakpoints

You can also right-click on a function in the Outline or Functions views and choose the Toggle

Breakpoint menu item.

You can also type a break command into the command-line at the bottom of the Commands view.

You can use a function name, a file name and line number (for example, blockops-noclutter.cpp:134)

or an address (for example, *0x11690) as the argument to the break command.

We'll see more features of breakpoints and more ways to set them later. We'll also see more uses of the

Commands view later.

Source and Disassembly views

 If you've changed the breakpoints since you set them, make sure the two breakpoints are set, enabled

(checked) and not being skipped.

 Click on the tab of the Debug Control view to bring it to the front, if it is not already in front. Click

the "beating" Continue button () in the Debug Control view. The game begins running and, after a

bit, opens its window.

page 44 of 99

 Choose Game > New Game (Ctrl+N) in the Gnometris window.

The game is stopped by the breakpoint in BlocksOps::generateFallingBlock().

The current PC location is shown by an arrow () in the left margin of both the source and Disassembly

views and by the dark green highlighting. The light green highlighting in the Disassembly view shows all

of the assembly instructions that correspond to the current source line.

The breakpoint that caused the stop is also highlighted and has a special icon () in the Breakpoints view:

We'll see more features of source and Disassembly views later

Variables view

The Variables view shows the local, file static and global variables. The values that can be changed have a

white background and the values that cannot be changed have a very light gray background.

page 45 of 99

The Locals part of the view shows the arguments and local variables to the function. Because of the current

location of the PC the variable cn is not available yet. We will be able to see it after we have stepped past

its initialization on line 298. Since BlocksOps::generateFallingBlock() is a C++ member function it

has a this argument that is a pointer to a BlocksOps structure.

 Expand this to see its data members

The Location column shows that this is currently in register R4 and it shows the memory addresses of the

data members. Notice that the rot and color data members have the value zero, since they were initialized

to those values in the BlocksOps constructor. They will be set as we execute the next few source lines. The

Size column shows the size of each variable in bits. The Access column shows if the variable or member is

read-only (RO) or read/write (R/W).

The field data member has type Block** and is a pointer to an array of COLUMNS Block*s that was set in

the constructor. COLUMNS is a global variable; we'll find out its value.

 Expand the Globals part of the view to see the global variables

We can see that the value of COLUMNS is 14.

 To see all 14 elements of the array that the data member fields is pointing to, we can set the Count

column for fields to 14 and expand it

 Collapse the data member fields to hide the array elements again; we aren't really interested in

them.

page 46 of 99

You can change the format used to show values by selecting one or more rows, right-clicking and choosing

a new format from the context menu. It won't hurt anything if you want to try it out.

Depending on the type and location of the variables selected, the context menu will have some of the

following items; feel free to try them out. We'll see the Registers, Memory and Expressions views later.

 If the variable is stored in a register then Show in Registers will select it in the Registers view.

 If the variable is stored in memory then Show in Memory will make it visible in the Memory

view and Show in Disassembly will make it visible in the Disassembly view.

 If the variable has a pointer type then Show Dereference in Memory will show the memory that it

points to in a Memory view and Show Dereference in Disassembly will show the memory that

it points to in a Disassembly view.

 You can choose Send to > Expressions View to add the selected variables to an existing

Expressions view or Send to > New Expressions View to create a new Expressions view

containing the selected variables.

The values displayed will change as we step through the program execution. Changed values are shown

with yellow highlighting. We can also change the values if we want (not now though, we'll do that later).

You can choose values for variables of Boolean and enum type by using a drop-down menu.

page 47 of 99

You can change which columns are displayed in the Variables view by right-clicking on the column

headings and choosing from the context menu.

You can also change which columns are displayed in the Registers, Expressions and Modules views this

way.

The File Statics are the variables that are declared with the C/C++ static keyword and are local to a file.

The current file, blockops-noclutter.cpp does not have any file statics. You can change which files are

listed under File Statics by right-clicking on the File Statics row and choosing from the context menu.

The Variables view has a Search button () at the top which opens a dialog that makes it easy to find a

variable if you know part of its name. For example, say we we're looking for a variable named instance;

we could click the Search button () and type "stan" (without the double quotes):

This shows us there is only one matching variable (which happens to be a file static in the shared library).

(If you don’t see it then something is wrong in the debug configuration that is preventing the unstripped

shared library from being found.) When we select it and click OK (or double-click it) then the variable is

page 48 of 99

shown in the Variables view:

The Search button is also available in the Registers, Expressions, Functions, Memory and Disassembly

views.

The Variables view also has a drop-down menu () which contains these commands:

 The New Variables View command creates a new, unfrozen

Variables view so that you can have more than one Variables

view at the same time.

 The Refresh command causes the values to be re-read from the

target. This could be useful for example when examining values

that are changed by hardware or another process.

 The Freeze Data command prevents the values from being updated so that you can later see the

values as they were at the time they were frozen.

The New View, Refresh and Freeze Data commands are also available in drop-down menus in other views:

Disassembly, Expressions, Memory, and Registers.

Later we'll see the Expressions view which is similar to the Variables view, but can display more complex

expressions and just the expressions that you specify.

Stepping

The stepping commands are buttons in the Debug Control view:

 Step (into) (; F5): the Step command steps to

the next source line or assembly instruction but

into function calls

 Step Over (; F6): the Step Over command

steps to the next source line or assembly

instruction and steps over function calls

 Step Out (; F7): the Step Out command

executes the rest of the current function and stops when it returns to its caller

Stepping can happen either by source line or assembly instruction. The Debug Control view has a toggle

button (;) that you can use to switch between the two modes. By default stepping is by source line

with the ‘s’ dark ().

 In stepping-by-source-line mode (), click the Step Over button (; F6). The execution

advances to the next source line by executing all of the assembly instructions that are highlighted with

light green in the Disassembly view. You can see in the Variables view that the rot data member has

been set to random integer from zero to 3. (The new PC arrow position is a bit strange, but it’s up to the

compiler (in this case gcc) to tell the debugger the correct line number information.)

 Click Step Over again. The local variable cn gets a location (register R0) and a value.

 Click Step Over a third time. The color data member has been set to the value of cn.

 Click Step Over three more times; until the if statement on line 307 is the next one to be executed.

Instead of stepping, you can click on the source line and then right-click and choose Run to Selection

from the context menu. If you step too far, just click the Continue button () and wait until the

current block finishes falling and the next block is generated and the breakpoint is hit again.

page 49 of 99

 Click the Step (into) button () instead of Step Over.

The execution steps into the call to BlockOps::blockOkHere() and the Variables and Disassembly

views are updated accordingly.

We can see from the green highlighting in the Disassembly view that using the Step Over command in

stepping-by-source-line mode () will step two assembly instructions. You can try switching to stepping-

by-assembly-instruction mode (). In this mode, Step Over (; F6) will step just one assembly

instruction. Remember to switch the stepping mode back to stepping-by-source-line mode to avoid

confusion later.

Registers view

In the Variables view we can see that x has the value 8 and is located in register R1.

 Right-click on x in the Variables view and choose Show in Registers.

Sure enough, R1 has the value 8.

 Select the 0x00000008 and change the value of R1 to 9. This change won't hurt the game.

 Look back at x in the Variables view; the new value is shown.

page 50 of 99

 While looking at the Registers view, step the application a few times. You can see the register

values changing and the changed values highlighted in yellow. You can see the changes in the

Variables view as well.

You can select one or more registers (the whole row, not just the value) and right-click to change the display

format. You can expand the CPSR register and see and change the individual fields. Changing the CPSR

could have bad effects on the application, so it’s probably not a good idea to change them just now. The

ARM core in the target has hardware floating point registers that are shown inside the VFP and NEON

folders. Since Gnometris doesn’t do much floating point we won’t do any more with them, but feel free to

have a look.

When you have a register selected you can right-click on it to get a context menu with Show Memory

Pointed to by register, Show Disassembly Pointed to by register and Send to items. The Show

Memory/Disassembly Pointed to by register commands display the memory starting at the address in the

selected register in a Memory or Disassembly view. Like the Variables and Expressions views, the Send

to submenu has commands that add the selected registers to an existing or new Expressions view.

Also like the Variables and Expressions views, you can use a context menu by right-clicking on the column

headings to choose which columns are displayed.

As mentioned earlier, the Registers view has a Search () button for finding registers, and a drop-down

menu () with Refresh, Freeze Data and New Registers View commands like the Variables and

Expressions views do.

Debug Control view

The Debug Control view shows the connected debug configurations and possibly some disconnected ones.

In our case there is just one interesting configuration, the gnometris configuration that we created earlier.

If you remove a debug configuration from the Debug Control view, you can get it back either by going to

the Debug Configurations dialog or by using Add Configuration (without connecting)... in the drop-down

menu () of the Debug Control view.

Call Stack

At the first level underneath the debug configuration are the threads; Gnometris has just one. Under the

thread are the frames of the call stack which represent the executing functions. The currently executing

function is listed first followed by its caller then its caller's caller and so on.

The current configuration, thread and function frame are highlighted in green. It is possible to change the

debugger's "focus" to a different configuration, thread or function frame by clicking on it.

 Click on the BlockOps::generateFallingBlock() frame. The source and Disassembly views

update to show where execution will resume when control returns to the selected frame. The Variables

view updates to show the local variables of the selected frame. The values in the Expressions and

Registers views also change to show the value they will have when control returns to the selected frame.

If there are no symbols loaded for a particular level in the call stack then the debugger will not be able to

show the function name or the caller – this is why the last level is just an address. Later we’ll see how we

can load the symbols for a specific shared library.

We can use the Step Out command to run the application until the current top frame,

BlockOps::blockOkHere(), returns to its caller

page 51 of 99

 Click the Step Out button (; F7); the application runs until BlockOps::blockOkHere() returns

to BlockOps::generateFallingBlock():

The BlockOps::blockOkHere() frame is gone from the call stack. Since the return value from a function is

in register R0, we can use the Registers view to see that BlockOps::blockOkHere() has returned a value of

true (1) which is also the value that BlockOps::generateFallingBlock() is going to return.

You can step out of more than one frame by right-clicking on the frame you want to step out to and choosing

Step Out to This Frame.

Play the game

 Click on the Continue button ().

This lets the game run until it hits another breakpoint (or quits). The blocks will start falling. Play the game

for a bit. You can move the falling block left or right using the arrow keys. The down-arrow key will make

the block drop quickly. The up-arrow key causes the block to rotate and when you press it the game will hit

the breakpoint we set on BlockOps::rotateBlock().

Let's disable the two breakpoints so we can play without interruption for a bit. We need the target to be

stopped to change the breakpoints.

 Stop the game. There are three ways to do this (which may have already happened)

1. Type up-arrow; this will cause the game to stop at the BlockOps::rotateBlock() breakpoint.

2. Wait until the block stops falling; this will cause the game to begin to generate a new block and

stop at the BlockOps::generateFallingBlock() breakpoint.

3. Click the Interrupt button () in the Debug Control view.

 Click the Skip All button () in the Breakpoints view. Alternatively, you could disable both

breakpoints by unchecking them individually. You can’t skip or disable the debugger internal

breakpoints.

 Click on the Continue button () to continue the game.

Play the game until you're bored and want to continue debugging.

 Stop the game by pressing the Interrupt button () in the Debug Control view. This will stop the

game. Since Gnometris spends most of its time sleeping, you will probably stop it in the C library

(libc.so.6).

 Reenable the breakpoint on BlockOps::rotateBlock() and disable the breakpoint on

BlockOps::generateFallingBlock().

 Click on the Continue button () to continue the game.

 If your game has ended ("Game Over"), choose Game > New Game (Ctrl+N) in the Gnometris

window to start a new one.

page 52 of 99

 When a block is falling, type up-arrow to the game so that it stops at the BlockOps::rotateBlock()

breakpoint.

Gaming the game

Let's give ourselves some points so that we can impress our non-debugging friends.

 Click on the Tetris::keyPressHandler() frame in the call stack. This frame has a local variable,

t, that is a pointer to the C++ object that represents the current game. Find t->scoreFrame->score in

the Variables view

 Click on the score value and type a new value. The new score will not show up on the Gnometris

display immediately. It will be displayed the next time the score is redrawn. (The changes to the

Gnometris code mentioned earlier cause the score to be redrawn every time a block moves down.)

Expressions view

The Variables view can get a bit crowded with variables that we're not interested in. We can use the

Expressions view to display just the interesting expressions.

 In the Expressions view enter the expression t->scoreFrame->score. There are a couple ways to

do this. You can select score (the whole row) in the Variables view; then right-click and choose Send

to > Expressions View. Alternately you can click where it says Enter new expression here then type the

expression (or you can click the Add New Expression button () to move the insertion point to the

same place).

You can use registers in the expressions by using names like $r4. You can also create expressions by

dragging a selection from other views such as source, Variables, Registers or Memory and dropping it into

the Expressions view.

Like the Variables view, you can select one or more expressions and right-click on them to get a context

menu that will let you change the format that the value is displayed in. Also like the Variables view, you

page 53 of 99

can also use Show in Registers, Show in Memory and Show Dereference in Memory commands using

context menu.

Also like the Variables view, you can choose which columns are displayed in the Expressions view by

right-clicking in the column headers. The Expressions view has a Search () button, and a drop-down

menu () with Refresh, Freeze Data and New Expressions View commands like the Variables,

Registers, Disassembly and Memory views do.

 Click on the Continue button () to continue the game.

The new score is displayed in the Gnometris window as soon as the block moves down one step.

 Type up-arrow to the game so that it stops at the BlockOps::rotateBlock() breakpoint again.

Since BlockOps::rotateBlock() does not have a variable named t in scope the value expression cannot

be shown.

You can select expression rows and click the Remove Selected Expressions () button to remove them or

you can click the Remove All Expressions () button to remove all of the expressions.

Expression Inspector view

There is a temporary version of Expressions view called the Expression Inspector view. You can use the

Expression Inspector view from the source views while debugging to quickly inspect some values.

 Select an expression in the source view, for example posx and right-click and choose Inspect from

the context menu.

You can do most of the same operations in the Expression Inspector view that you can do to an

Expressions view including adding more expressions, changing the columns and formatting, etc. If you

want to save some expressions that you've added to an Inspector view, select them and right-click and

choose Send to which will add them to an existing or new Expressions view.

Memory view

The Memory view displays memory in various formats. It has Address and Size fields. The Address field

is an expression for the starting address to be displayed and Size is an expression for the number of bytes to

be displayed.

page 54 of 99

 Put $sp in the Address field of the Memory view and put 128 in the Size field. Now we're viewing

the top to the stack. (The stack grows toward lower addresses.)

The memory address of the first byte in each row is displayed in the left margin. The width of the view

determines how many bytes are displayed on each row.

You can set the Address field by dragging a selection from another view such as source, Variables or

Expressions and dropping it into a Memory view.

 Use the call stack and the Variables view to find the t->defaultPixmap member of the Local

variables in the Tetris::keyPressHandler() frame. Select the member's row in the Variables view,

right-click and choose Show Dereference in Memory and change the Memory view’s Size field to 128.

Now we are viewing the string (char[]) data.

The memory values are displayed both numerically and as characters; either can be changed.

 It won't hurt the game to change the beginning of this string. Select the first / character and type a

few characters (for example "hello") to see how it works. Note that the changed values also show in the

Variables view.

You can use the Search button () to open a search dialog like the Variables Expressions, Registers and

Disassembly views that makes it easy to see the memory holding a global variable if you know part of its

name.

You can type the first few characters (or none) into the Address field

and then type Ctrl+Space to use Content Assist to see a list of

variables whose names being with those characters which you can then

pick from

page 55 of 99

INFO: In Windows, if foreign language support is enabled, the Ctrl+Space key combination is used to

change between languages inside a text box (for example English to Chinese). You can change the key

combination to something else in Eclipse by going to Window > Preferences > General > Keys > Content

Assist to change the key combination to something else.

The addresses (and sizes) you use are kept in a history list. You can use the Back () and Forward ()

buttons to walk through the history list or use the History () drop-down menu to choose a recent address

value. You can use the Home/Clear Data () button to empty the Address field and show no data, which

is the default. The Memory view has a drop-down menu () that has a Clear History command that

clears the history of the Address field. The Disassembly view also has Address and Size fields and a

history list.

If you haven't already used them, you can try using the Show in Memory, Show Memory Pointed to by

register commands from the context menus of the Variables, Expressions and Registers views to examine

data in a Memory view.

You can also select an expression in a source view, right-click and choose Show in Memory or Show

Dereference in Memory from the context menu.

The Memory view has drop-down menus to change the number of bytes in each value (width) and the

format of the numeric values.

It won't hurt anything if you try changing the width and the format to see what happens. The Memory view

has a button () to toggle the display of the characters on and off. You can try it, too.

If you hover the mouse pointer over a value in the Memory view a tooltip will show you the value in other

formats.

You can toggle these tooltips off or on with the Show Tooltips command in the Memory view’s drop-down

menu ().

If the Memory view is displaying instruction memory where a breakpoint is set, the breakpoint symbol will

be shown (). You can also right-click and toggle, enable and disable breakpoints on memory locations

(these are execution breakpoints though, not data watchpoints).

The Memory view's drop-down menu () has Import Memory and Export Memory command that you

can use to read and write a region of memory to a file in various formats. The Memory view's drop-down

page 56 of 99

menu also has Refresh, Freeze Data and New Memory View commands like the Variables, Expressions,

Registers and Disassembly views do.

Commands and History views

You have probably noticed that the debugging actions that you've been doing have been recorded in the

Commands view along with responses. The commands are also recorded in the History view, without the

responses. The debugger can be controlled by typing commands into the Command field of the

Commands view and pressing Return or clicking the Submit button.

While you are typing a command you can get help with what you have typed so far by pressing Ctrl+Space

to activate Content Assist

 Type set st into the Command field and then type Ctrl+Space. This activates the Content Assist

which shows the possible completions and help for each. You can use the mouse and arrow keys to

choose which alternative you want:

In this case, we don't want any of them so just press Esc to dismiss the assist windows.

You can type the help command to find out about all the DS-5 Debugger commands. Pressing the F1 key

(or Shift+F1 on Linux) will also display Help for whichever view you are using at the time.

Let's "improve" our Gnometris playing further, this time using the debugger command line.

 Reenable the breakpoint on BlockOps::generateFallingBlock() and run the game until it stops

there.

This function uses a member, blocknr, that determines the shape the new block. I like the straight blocks

which Gnometris represents by the value 5

 Execute the command set var blocknr = 5 (if you like the two-by-two blocks better you can use

the value 6 instead).

 Click on the Continue button () to continue the game. Now the new block has the shape you

forced.

You can re-execute the last command by typing Return or clicking the Submit button. You can also use up-

arrow and down-arrow to easily access previous commands.

You can also drag selections from the other views such as source, Variables, Memory, Project Explorer

and even Windows Explorer to the Command field to construct commands.

The Commands view has buttons that let you save, clear, and lock the scrolling of the view. You can use

the Show History button () to open the History view. You can use the Run Script drop-down menu (

) to run your recent scripts, favorite scripts or any scripts.

You can select lines of the Commands or History views and right-click on them to get a context menu

containing Save selected lines as a script... and Execute selected lines commands.

The History view has an Export button () that creates a script from (exports) the selected commands. It

also has buttons that clear the view () and lock the scrolling () of the view.

page 57 of 99

Scripts view

You can collect debugger commands into script files and easily re-execute them from the Scripts view.

 Select the set var blocknr = 5 command that you executed above in either the Commands view

or the History view.

 Right-click on the selected line and choose Save selected lines as a script...

 A file save dialog will open. Save the file on the desktop with the name favorite-block. And choose

Yes to the dialog asking if you want to save the script in the Scripts view. (If you choose No, the script

file is still created on disk and you can use the

Import Script button () of the Scripts view to

add it.)

You can run a script in the Scripts view by double clicking it or by selecting it and clicking the Execute

button () at the top of the view. You can also run scripts using the Run Script drop-down menu ()

in the Commands view.

You can easily open a script to edit it by selecting it and clicking the Edit button (). You can create a

new empty script and open it for editing by clicking the New script button (). If you already have a script

file, you can add it to the Scripts view by clicking the Import Script button () and finding it. You can

delete scripts by selecting them and clicking the Delete button ().

You can also create scripts by pasting into the Scripts view or dragging selections into it from other views

such as History, Commands and source.

Breakpoint scripts

We can do complex debugging by executing a

script every time a breakpoint is hit. Let's

automate forcing our favorite block.

 Wait until the game hits a breakpoint, or

type up-arrow to encourage it to hit a

breakpoint.

 Right-click on the breakpoint on

BlockOps::generateFallingBlock() in the

Breakpoints view and choose the

Properties... context menu item. Use the

drop-down menu to choose the favorite-

block.ds script file (on the desktop,

remember?).

 Check Continue Execution and click the

OK button.

Now whenever this breakpoint is hit, DS-5 will

execute the favorite-block script and then continue

execution. You can check Silent if you want the

breakpoint to not display messages in the

Commands view when it is hit.

 Disable the breakpoint on BlockOps::rotateBlock() (the other one) so that it won't stop the game.

 Click on the Continue button () to continue the game. Now see how well you can play!

page 58 of 99

Show off your skills

You may have noticed that Gnometris's preview pane is still showing the next block that was chosen before

our breakpoint script forced it.

 Prove that you understand what's going on by using the DS-5 Debugger to make the Gnometris

preview pane also show your favorite block. Maybe you want to force the block to be your favorite

color, too.

Advanced Breakpoints

There are some additional features available in the Breakpoint Properties dialog.

You can set a Stop Condition expression for a breakpoint. Every time the application reaches the

breakpoint the condition expression is evaluated. If the expression's value is zero (false) the application is

resumed without performing any other breakpoint actions; the ignore count is not updated and any

breakpoint script is not executed. If the expression's value is non-zero (true) the breakpoint is processed

normally, that is the same as if there were no condition expression.

 Enable the breakpoint on BlockOps::rotateBlock() and in its

Breakpoint Properties set the Stop Condition to rot==2. This means

the breakpoint will be ignored except for one of the four possible

rotations. (Some of the rotations look the same as other rotations for

some shapes.)

 Click on the Continue button () to continue the game.

 Now type up-arrow repeatedly to rotate the block and see that the debugger stops only every fourth

time.

You can also set an Ignore Count for a breakpoint. This causes the breakpoint to be ignored a given

number of executions after which the breakpoint will begin stopping each time.

You can also access the Breakpoint Properties dialog by right-clicking on a breakpoint symbol () in a

source view and choosing DS-5 Breakpoints > Breakpoint Properties... or right-clicking on a line with a

breakpoint symbol () in Disassembly view and choosing the Breakpoint Properties... menu item.

You find out the purpose of a debugger internal breakpoint by right-clicking on it in the Breakpoints view

and choosing the Properties... menu item.

More features in Source and Disassembly views

You can hover the mouse over the tab of a source view (e.g. blockops-noclutter.cpp) and a tooltip will

show you the path to the file within the Project Explorer view.

In a source view you can set the insertion point on a line of code and then right-click to get an enormous

context menu. Most of the context menu items are for use when writing code but the following are used

while debugging with DS-5:

 You can use the Show in Disassembly command to show the assembly instructions that correspond

to the line with the insertion point in the Disassembly view. This also sets the Address field of the

Disassembly view.

 Like in other views, you can use the Send to submenu to add the currently selected text to an

existing or new Expressions view.

page 59 of 99

 You can use the Set PC to Selection command to set the PC register to the first assembly instruction

for the line with the insertion point. This can be can be very handy for skipping some code or re-

executing a bit of code that just did something unexpected—but you need to know what you are

doing.

 You can use the Run to Selection command to place a temporary breakpoint on the line with the

insertion point and then run until it is hit (or another breakpoint is hit).

 You can also use these commands which were discussed earlier: Inspect, Show in Memory, Show

Dereference in Memory.

In addition to double-clicking on the left margin of a source line to toggle a breakpoint, which we've seen

earlier, you can toggle, enable and disable breakpoints and access their properties by right-clicking on the

left margin of a source line

In the source views when you hover the mouse pointer over an identifier, a tooltip will be displayed showing

the value of a variable, the documentation for a library function or the source code of the declaration of the

identifier. When you put the insertion point in a function, the left margin is highlighted to show the extent

of the function (shown in the picture above). When you put the insertion point in an identifier, for example

a function or variable name, all occurrences of the same identifier in the current file are highlighted. You

can then right-click and choose Find Declaration (or type F3) to go to the definition or declaration of the

identifier.

Like the Memory view, the Disassembly view has an Address (on the left) and Size (on the right) fields.

You can type an expression (for example $r0 or 0xC100) or a symbol (for example main) in the Address

field to disassemble around a specified location. A hollow arrow ()indicates the line specified in the

Address field:

The green highlighting shows the instructions that belong to the same source line.

Like the Memory view, you can type the first few characters (or none) into the Address field and then type

Ctrl+Space to use Content Assist to see a list of code symbols (functions) whose names being with those

characters which you can then pick from. Also like the Memory view, the Disassembly view has a Search

page 60 of 99

button () to open a search dialog that makes it easy to see the instructions of a function if you know part

of its name.

The Size field, which defaults to 100, specifies how many instructions before and after the address should be

scrollable. You can use the Home () button to set the Address field to the default <Next Instruction>

which centers the Disassembly view around the PC. You can use the Back () and Forward () buttons

to walk through the address history or use the History () drop-down menu to choose a recent value.

In the Disassembly view you can right-click on an assembly instruction to get a context menu including the

breakpoint commands and the following:

 The Run to Selection and Set PC to Selection commands do the same thing as they do in source

views.

 You can use the Show in Source command to select the source code line that corresponds with the

assembly instruction.

 You can use the Show in Registers command to highlight the registers accessed by an assembly

instruction in the Registers view.

When you hover the mouse pointer over an assembly instruction in a Disassembly view, a tooltip will

display if that address is pointed to by the PC, LR, or has a breakpoint.

The Disassembly view has a drop-down menu () that contains an Instruction Set submenu that allows

you to force the instructions to be disassembled as ARM or Thumb. Like the Memory view, the

Disassembly view's drop-down menu also has a Clear History command that clears the history of the

Address field.

The Disassembly view's drop-down menu () also has Refresh, Freeze Data and New Disassembly View

commands like the Variables, Expressions, Registers and Memory views do.

Shared Libraries and Modules view

The DS-5 Debugger can debug shared libraries (.so files) in pretty much the same way as applications.

You can step into and out functions in a shared library just as if they were in the main application and the

call stack will show which frames are from which shared libraries.

Gnometris uses a shared library named libgames-support.so. If you want to try out the shared library

support, you can place a breakpoint on the function games_scores_add_score, in libgames-

support/games-scores.c, in the usual ways. You can see information about the shared libraries that are in

page 61 of 99

use in the Modules view:

Like the Variables, Expressions and Registers views, you can control which columns of the Modules view

are displayed by right-clicking on the column headings.

If you set a breakpoint in shared library code before the shared library has been loaded by the application

then the breakpoint will be kept as "pending". When the library is loaded the debugger will search for the

shared library's debug information according to the solib-search-path which can be set in the debug

configuration or using the command line. When the debug information has been loaded the pending

breakpoint will be resolved.

Because Gnometris loads libgames-support.so before main is reached you will not see breakpoints in

libgames-support.so in the pending state unless you change the debug configuration to use Connect only

or Debug from entry point.

You can also right-click on an entry in the Modules view to get a context menu with commands for loading

and discarding symbols and displaying the module in a Memory or Disassembly view.

 Right-click the entry for the C library, /lib/libc.so.6 and choose Add Symbol File... then

navigate to My Documents\DS-5 Workspace\distribution\filesystem\armv5t_mtx\lib and

choose libc.so.6

This copy of libc.so.6 was not built with debug info, and the source is not in the example, but there is still

enough information to use C library symbols, for example memcpy, and the call stack will now show C

library symbol names instead of just addresses.

If you wanted, you could add My Documents\DS-5

Workspace\distribution\filesystem\armv5t_mtx\lib to the Paths in the Debugger pane of the debug

configuration as a Shared library search directory. Then the debugger would find the symbols for the

libraries automatically.

Change of topic

Let's change focus now from debugging to profiling and take a look at ARM Streamline. There are a few

more debugging topics that we'll come back to after Streamline, if there's enough time and interest.

page 62 of 99

ARM Streamline Workshop using Xaos on Snowball
Copyright 2010-2012 ARM Ltd. All rights reserved.

ARM® Streamline™ is a graphical performance analysis tool. Combining a Linux kernel driver, target

daemon, and an Eclipse-based user interface, it transforms sampled data and system trace into reports that

present the data in both visual and statistical forms. ARM Streamline uses hardware performance counters

along with kernel metrics to provide an accurate representation of system resource use.

This part of the workshop demonstrates the use and features of the ARM Streamline performance analyser to

inspect applications running on an ARM Linux target. The workshop details the Linux configuration and

setup required to enable application profiling. It demonstrates how use the Streamline report to analyse and

investigate application performance and power. All of the software you need, including the ARM Linux

image for the target, is included with DS-5.

page 63 of 99

Introduction to ARM Streamline

The ARM Streamline product uses sample based techniques to capture system and application data for

analysis. The data is then analyzed by the DS-5 Eclipse Streamline plug-in and presented as a report.

The kernel driver (called gator.ko) together with a daemon running on the target (called gatord) captures

the data and sends it over the network to the host PC for analysis. The kernel module must be built against

the Linux kernel in use on the target.

Preparation

For the purpose of this workshop we are going to use an application called Xaos. It is an interactive fractal

zoomer included as an example in DS-5.

Host Setup

DS-5 can be used on Windows and Linux hosts. If your host has not already been setup for you then you

will need to follow the instructions in the appendix on page 87

 If it’s not already started, start the Xming X server. (Refer to Starting the X server on the Host on

page 33.)

Target Setup

For the workshop you’ll be supplied with a Snowball board that already has gator running on it. The gator

driver and gator daemon are open source and are provided with DS-5. If you want to setup your own target

please see Appendix B: Snowball: Linaro Linux target setup page 94. (If you want, you can connect to the

target’s serial port to see the target’s console messages, but it is not necessary for this workshop. See the

Serial setup in the appendix on page 92. We will, however use the different, but confusingly similar,

Terminals view to make an ssh connection later.)

Starting Eclipse

If you have not started Eclipse for DS-5 yet, follow the steps below

 Start > All Programs > ARM DS-5 > Eclipse for DS-5 and choose a location for the workspace

where Eclipse projects will be stored. The default workspace location is fine.

 If this is the first time you've started DS-5 you will see the "Welcome to ARM DS-5" home page;

click Go to the workbench. You can get the Welcome page back if you want it later by choosing Help

> Welcome.

Installing a DS-5 License

In order to use DS-5 for this workshop you will need to have a license for DS-5 Basic Edition, either a full

or evaluation license. (A license for Professional Edition will also work.) If you don’t have a license a

dialog will open with an explanation and a button to Open License Manager.... Without a license you will

Ethernet (open window

on Xming X server)

Host
Linux / Windows

gatord

xaos

Snowball board

ARM Linux Target

Linux

kernel

Xaos

application

Gator driver

(kernel module)

Linux file

system
DS-5

X server

Ethernet

 Gator daemon

Energy Probe

USB

page 64 of 99

see only some of the Streamline panes and information. You can get an evaluation or full license by

opening the license manager using Help > ARM License Manager..., clicking the Obtain License... button

and following the instructions. You will need to be connected to the internet. When you receive the license

file, you can add it by using the Add License... button. After adding a license you will need to restart

Eclipse in order to fully enable Streamline (sorry).

Importing Xaos

We use the two example projects distribution and xaos.

 Look in the Project Explorer view and if distribution and xaos do not appear there, follow the

instructions for importing them in the appendix on page 87.

The build produces an application /xaos/xaos-3.5/bin/xaos in the Project Explorer view. This file will

contain debug information. The stripped subdirectory, /xaos/xaos-3.5/bin/stripped, has a copy of

xaos with the debug information removed. The project contains pre-built copies of these two files which

will be overwritten when you build the project.

Getting help for Streamline (digression)

You can press the F1 key (or Shift+F1 on Linux) at any time to get help about the current view. You can

use Help > Help Contents > ARM DS-5 Documentation > Using ARM Streamline to view the

documentation. You can access cheat sheets for various tasks using Help > Cheat Sheets > ARM …, for

example importing the example projects. (But we won't be following those cheat sheets here.)

If you don’t have a real hardware target you can analyze some pre-captured data to use for the rest of the

workshop. If you do have a real target, skip this step and carry on with the workshop. To import a saved

report go to the section Import, Export and Save Reports on page 82. Following the import you can skip to

the section The Timeline view – a first look at the Streamline report on page 70.

Install Xaos to the target

Unlike the DS-5 Debugger, ARM Streamline does not automatically copy applications to the target or start

them. Instead, it profiles whatever is running on the target while it’s capturing data. We’ll copy Xaos onto

the target ourselves and start it “by hand”.

 If it’s not already configured, configure the RSE connection (Refer to Creating a Target Connection

in the appendix on page 90.)

Now that we've established access to the target, we'll install the xaos application by copying it from the

host;

 Drag the Remote Systems view by its tab to a different pane from the Project Explorer view so that

you can see both views at the same time.

 Copy the stripped xaos by dragging it from the bin/stripped folder in the project to the My Target

> Sftp Files > My Home folder on the target. (If the connection has Files instead of Sftp Files, then the

connection was not created correctly and you should Disconnect it, Delete it and recreate it.)

You can copy the unstripped version from the bin folder instead, but it’s bigger and the debug

information isn’t needed on the target.

page 65 of 99

 Expand the My Home folder and right-click on xaos on the target; choose Properties > Permissions

and check the three Execute boxes:

Alternatively, you could set the execute bits by executing the following command in the Terminals view:
 chmod +x /home/linaro/xaos

 You should also copy splash.bmp by dragging it from the top-level xaos project folder to the My

Target > Sftp Files > My Home folder on the target.

Error! Hyperlink reference not valid.
Now we'll create a terminal connection so that we can execute commands easily on the target. You can

Collapse the Sftp Files to get them out of the way.

 In the Remote Systems view, create a Terminal by right-clicking on Ssh Terminals and choosing

Launch Terminal.

This will open a Terminals view in Eclipse that can be used to execute commands on the target. (This is

different from, but confusingly similar to the Serial view).

page 66 of 99

Set the Capture Options

If it’s not already open, open the Streamline Data view:

 Select Window > Show View > Streamline Data.

Streamline data and reports are shown in the Streamline Data view. It will be empty, unless a previous

profiling session has been run, in which case saved captures and reports may be present in the view. You

can select any existing captures and reports and click the Delete button () to get rid of them. You can get

help by clicking the Show Help button ().

The Streamline Data view has an Address field for specifying the name or IP address of the target, a Start

Capture button (), a Change Capture Options button () and a Counter Configuration button ().

 Click the Capture Options button ():

 Set the Address field to the IP address of the target 169.254.0.100.

 You can select Sampling Rate as Normal (1000 samples per second), Low (100 samples per

second) or None (no sampling). We’ll use Normal which is the default.

 You can set Buffer Mode to Streaming, Large, Medium or Small. In Streaming mode the

captured data is regularly streamed from the target over the network to the host PC. It may skew the

performance of any network critical applications. If Buffer Mode is Large (16MB), Medium

(4MB) or Small (1MB), the data will be captured to a buffer allocated on the target. The profile

session will be stopped when the buffer is filled up. Then data will then be passed to the host in one

go. By default buffer mode is set to Streaming.

Digression: If your target has limitations about capturing to the host PC (for example no

networking), it is possible to capture to the target and then to manually copy the captured data to

your host PC. See Help > Help Contents > ARM DS-5 Documentation > ARM Streamline >

Advanced Customizations > Capturing data on your target

 You can use the Duration field to a maximum length of time to capture data in seconds or

minutes:seconds. By default Streamline will capture data until you click the Stop button which

we’ll see later.

 If Call Stack Unwinding is checked and the program has been compiled with frame pointers in

ARM state then Streamline will be able to capture information about call paths, call graphs and stack

usage. Xaos is built this way, so leave Call Stack Unwinding checked.

page 67 of 99

 If you are using an ARM Energy Probe, in the Energy Capture section you should choose ARM

Energy Probe. Once the ARM Energy Probe is selected, the Tool Path will display the path for the

caiman application if the DS-5 was installed in the default directory. (If DS-5 is installed in the non-

default directory then, manually add the path to the caiman application. The caiman application can be

found in the ...\DS-5\bin directory.)

During a capture, Streamline will collect power information from the target using the energy probe and

then display the power charts in the report. There are three channels available on energy probe and each

channel gives us the information about the power consumption, voltage and current. Check the channels

you have connected and if you wish to analyze the Voltage and/or Current then those need be checked

as shown in the above figure. Power analysis is discussed in more detail later. See ARM Energy Probe

setup in the appendix on page 99 for setup information.

 The Analysis section lets you specify whether Streamline should Process Debug Information. This

will allow you to use Streamline to view source code. The High Resolution Timeline option enables

you to zoom in more levels in the timeline (for example context switching). These checkboxes only

control the defaults for the first report; they do not change the captured data.

 In the Program Images section, click the Add ELF image from Workspace... (second) button ()

and choose the xaos binary with debug information in the workspace from the /xaos/xaos-3.5/bin

folder. The symbols button () next to binary name indicates that debug symbols will be loaded for the

binary. You can also add more than one program to analyze at once. You can also add shared libraries,

the kernel (vmlinux) and kernel modules (.ko) to the list.

 Click Save to save the capture options.

You can use the Export... and Import... buttons to save and load favorite configurations to and from files.

Configure Counters

Advanced ARM processors have a performance monitor unit

(PMU) in hardware. Exactly which events can be counted and

how many events can be counted at once depends on which

ARM processor is being used. The operating system allows

access the performance counters for debug and profiling

purposes. The Cortex-A9 in the Snowball board has a cycle

counter and 6 configurable event counters.

Streamline defaults to capturing data from various counters in the

PMU, kernel and L2 cache controller, depending on the target’s

hardware and kernel.

 Click the Counter configuration button () to open the

Counter Configuration dialog where you can examine and

change the counters that you wish to capture.

You can hover your mouse over a counter to see a description of the event being counted.

You can add counters by dragging them from the Available Events list to the Events to Collect list. To see

the Linux kernel and L2C-310 events you will need to scroll the Available Events list down. You can

remove events from the Events to Collect list, so that you can count something else, by selecting them and

clicking the Delete button (). The order in the Events to Collect list is fixed. We will see later how to

reorder the display of the Timeline charts in the report.

page 68 of 99

 If they are not already in the Events to Collect list, add these counters:

 • Cortex-A9/Cache: Data dependent stall: to see when the processor is waiting on the L1 cache

 • L2C-310/L2 Cache: DRH and L2 Cache: DRREQ: to see what the L2 data read hit ratio is. You

will need to delete L2 Cache: CO first because the L2C-310 cache controller only allows two counters

to be captured at once.

 • Linux/Clock: Frequency: to the configuration to see how the kernel changes the maximum clock

frequency that the core can run at (dynamic voltage and frequency scaling).

 You can delete the Disk IO: and Memory: counters since they are not very interesting in this

example. But leaving them in the list won’t hurt either.

 Click Save to save the counter configuration. The counter configuration is saved on the target.

You can use the Export () and Import () buttons to save and restore your favorite counter

configurations.

If you have your own hardware or software counters (for example, number of packets processed) you can

modify the gator software and use Streamline to capture and to display charts of your own custom counters.

The counters of the L2C-310 cache controller are a good example to start from.

Capture some profile data

 Click the start capture button () to collect data

from the target. You are now prompted to specify the

name and location of the capture file where the profile

data is stored on the host. By default it will be in the

directory ...\My Documents\Streamline. You can

change the file name, for an instance we are profiling

Xaos application, I used Xaos_C01.apc. The C01

indicates that it is the first capture. When you save the

file, a new capture session will appear in Streamline

Data view. The spinning wheel next to the button indicates that data is being captured from the target

and the elaspsed time of the capture is shown.

 Start the Xaos application. Xaos needs a DISPLAY environment variable to know which X server to

open it’s window on. Type these commands, without the $, in the Terminals view (169.254.0.1 is the

host's IP address):
$ export DISPLAY=169.254.0.1:0.0

$./xaos -autopilot -threed -threads 3 –streamlinevisualannotation

This will start Xaos with three threads, put it into autopilot mode and apply a Pseudo 3D filter.

page 69 of 99

You can also set the options from the Xaos GUI by selecting UI > Autopilot and Filters > Pseudo 3d.

(When running with multiple threads the Xaos program has some display glitches and even hangs

sometimes, but it’s still useful as a demonstration. You can quit it and start it over if it gets stuck.)

The application has many filters and fractal formulae. You can play with the menu items a bit and if you

disable Autopilot you can “drive” the application by clicking your left and right mouse buttons (but your

profile results will vary a bit from what we have here). Once you are finished looking at the pretty pictures,

continue.

 Click the Stop button in the Streamline Data view to stop capturing data and generate a profile

report. Streamline will show a spinning progress wheel as it analyses the captured data.

Only the capture has stopped, Xaos is still running. If you want, you can quit it by closing its window or

typing Ctrl+C in the Terminals view where you started it or just leave it running.

Capture

file

Analysis

file

page 70 of 99

Examine the Report

When the analysis is finished, the report view will open with a name determined by the capture’s name, for

example Xaos_C01_A01 for the first analysis of the Xaos_C01 capture.

 Double click the Xaos_C01_A01 tab of the report view to maximize it.

All of the Streamlines views can be exported to text files by using the Export button () except for the

Code and Call Graph views.

Timeline view – a first look at the Streamline report

The Timeline view is the first view presented when a report is opened. It displays information to give an

overall view of the system performance. The graphs and percentages in your report may be different than the

ones shown here depending on how long you captured data for.

The top section of the Timeline view, below the time ruler, shows the system performance charts.

Streamline captures performance data from the hardware and operating system, and displays the samples or

“snapshots” of the chosen counters in the system performance charts. The order of the charts can be

rearranged by dragging them by the gray legend area at the left end up or down. Just to the right of the

legend is an indication of the full vertical scale of each chart (for example,). You can get help on any

of the charts by clicking the Help button () in the top left of the Timeline view and select Timeline

view charts.

If the target has multiple cores then some of the charts will show combined values for all of the cores. You

can use the expansion triangle to show the values for the individual cores as shown below.

Process

list

Charts

View

tabs
Time

ruler

Samples

HUD

Visual

annotation

“filmstrip”

Cross-section marker

Caliper

range

Timeline overview

Individual cores

Core 0

Core 1
Expansion

Triangle

page 71 of 99

Above the time ruler are the buttons and the Timeline overview.

The Timeline overview shows the current zoom level as a drop-

down menu (). The large time in the center shows the time

of the current mouse position as you move the mouse. The Timeline overview also shows the length of the

capture after the L and the number of processes after the P. Along the bottom of the Timeline overview is a

bar that represents the entire capture. Clicking on the bottom bar will jump scroll the Timeline to that point.

 Click the zoom buttons () to zoom in and out one level at a time (by a factor of 2 or 2.5).

You can also use the drop-down menu () in the Timeline overview to change the zoom.

By default the finest resolution is 1 ms. If you use the High Resolution Timeline option when doing the

analysis the finest resolution is 1 µs. You can also zoom in and out by typing I or + and O or -.

Between the charts and process list is the cross-section thumb bar (). If the cross-section

thumb bar is at the bottom of the view, you won’t be able to see any processes.

 You can drag the cross-section thumb bar up and down () to adjust how many

charts and processes are shown.

By default the process list shows a “heat map” colored by CPU Activity in red, orange and yellow. Red

indicates that this is a “hot spot” i.e. an area where a lot of time was spent during the execution. These are

typically the parts of the code which one would inspect and look to optimize first.

If a process has multiple threads it will have an expansion triangle to the left of the process name that will

toggle between showing the individual threads and the aggregate of all the threads. You can see the context

switches where one process or thread stops running and another starts. Xaos gives these threads names,

Worker-1, Worker-2 and so on depending upon the number of threads that you choose to run at the time of

launching the application.

Process/thread contention is shown by in the process list. This is when a process or thread is runnable

but other threads are using all of the cores, for example here is a case where all three threads of xaos want to

run at the same time (but there are only two cores). Contention is also shown in the CPU Wait/Contention

chart.

We can change to coloring the processes and threads to be “by contention”:

 Click on the button at the left end of the CPU Wait/Contention chart.

Now the process list has been recolored to show red when processes are waiting to run.

 Click on the button at the left end of the CPU Activity chart to restore the normal coloring by CPU

use.

You can see how a particular process contributes to a chart by selecting it.

 CPU

contention

Process

focus button

page 72 of 99

 Click on the expansion triangle at the left end of the CPU Activity chart to show both cores.

 Click on the legend area of the xaos process.

The xaos process will become selected and the CPU Activity chart will adjust to show the load caused by

just the xaos process. You can see the original values of the CPU Activity chart as “ghosts”.

 Click on the legend area of the xaos process again to deselect it.

If the target has multiple cores, you can click the Toggle X-Ray button () to turn on X-Ray mode which

changes the coloring of the processes and threads to show which core they executed on. There is a legend at

the bottom left of the view to show which core is which color (). Hovering over a colored

process bar will also show which core was active in a tooltip.

Let’s find out more about where the time is being spent:

 Zoom into an area where you can see switching between xaos, the [kernel] and [idle] similar to the

pictures above and click to set the cross-section marker.

 Show the Samples HUD (heads up display) by clicking the Samples HUD button () or typing S.

The Samples HUD displays a colored histogram of where time was spent in the selected cross-section. If

you have supplied debug symbols for the sampled functions then the function names will appear in the

Samples HUD. For samples without symbols then the name of the process or shared library will be shown

surrounded in square brackets [] to indicate that the time was spent inside some unknown function.

 Click on the Timeline anywhere under the ruler and to the right of the labels to change the selected

cross-section being inspected. The entries in the Samples HUD will change accordingly.

The initial width of the cross-section is determined by the current zoom level. The time of the beginning of

the cross-section is shown in the “thumb” of the cross-section bar (). You can move the

cross-section by dragging the thumb right and left and by typing the right and left arrow keys. You can

grow the cross-section by dragging the right or left edge of the cross-section thumb. The duration of the

cross-section is shown in square brackets ().

At the top of the Timeline view, above the time ruler, is the caliper range (). You can set the

caliper range by dragging either end, or by right-clicking and choosing Set left caliper, Set right caliper or

Reset calipers. All of the samples outside the caliper range are ignored in all of the other views. You can

also reset the calipers to include all of the captured data by clicking the Reset calipers button () at the

top of the view.

Streamline has an Annotate feature that allows the application or kernel to add timestamped text, images

and bookmarks to the Streamline report at key points in your code. These annotations are displayed in the

Timeline and Log views. In the screenshot above text annotations are used to show when Xaos’ update

display and calculate fractal functions are executing. Additionally Xaos has also instrumented to capture the

Legend

area

Load caused by

the individual

process

Expansion

Triangle

page 73 of 99

frame buffer as a visual annotation which is displayed it as a “filmstrip” in the Timeline. The blue markers

at the top and bottom of the filmstrip chart show the time at which the visual annotation was sent.

 Zoom to about 200ms or coarser resolution and move the mouse right and left over the filmstrip to

see the sequence replay.

There is more information about annotations later.

Configuring Charts

You can control many aspects of the display of the charts in the Timeline view by using each chart’s

configuration panel. You can control which counters are displayed and how they are grouped. This panel is

used to change all aspects of the chart from color to the counters that the chart uses, giving the option to

display the data in a more convenient way.

Each chart can display one of more series of captured data in a variety of ways. By default, the chart for the

two L2 cache counters that we added (L2C-310/L2 Cache: DRH and L2 Cache: DRREQ) is a stacked

chart. This is not really a good presentation because the data read requests

counter (DRREQ) includes the accesses that were also counted by data read hits (DRH) so stacking the

values is double-counting the hits. We will now see how to make this chart more user friendly.

 Click on the chart configuration button () to open the chart configuration panel for L2 Cache

 Click on the chart color button () to choose the color for differentiating the two series.

In the tool bar section, there are three chart type buttons on the left hand side,

 As mentioned above, by default the chart is stacked on top of each other, to click on the Overlay

chart button () to see the area below the line is filled with the color defined in the series control for

each data set. Now the series higher in the chart control will appear behind series that are lower in the

chart control. This is the most appropriate way to view these series.

 To go back to the default view, click on the Stacked chart button () to fill line charts to stack on

top of each other.

 Click on the Stacked bar chart button () to see the bar style chart, each bin in the chart is

represented by a colored bar.



Adding/Deleting series:

 Click on the add sign button () at the end of the series to add a new series. Fill the Name for the

series. Fill the Tooltip field.

 In the Expression field, press Ctrl + Space or the $ symbol to activate a drop-menu that shows you a

list of counters. You can select a counter in this Content Assist list to see its description. Double-click on

a counter to add it to the Source field.

Chart

configuration

button
Tool bar

section

Series

section Chart type

buttons
Choose color

page 74 of 99

 Enter the Unit type for the series. The value entered here will appear when the Cross Section Marker

is used to select one or more bins.

 To delete a series, click on the minus sign button ().

Check boxes on the tool bar:

Average Selection: When this option is checked, any selection made using the Cross Section Marker shows

the average value of all bins included in the selection. If unchecked the overlay is a total value of all bins.

Average Cores: When this option is checked, values in a multi-core chart are the average of the individual

cores when you have not used the multi-core disclosure control to show per core data. If unchecked this

chart control option, the multi-core chart shows the totals from all cores.

Percentage: In a percentage style chart, values are plotted as percentages between 0 and 100 percent. The

maximum value in the chart represents 100% in a percentage chart and all other values are compared to that

number to calculate a percentage.

You can drag the series in the chart configuration panel up and down to reorder them using the handle ()

that is located on the left hand side of the series.

You can also control how counters from multiple cores are combined: average or sum.

You can also control how counters values are reported over a selection: average, sum, minimum, maximum

or frequency.

You can control the descriptions (tool tips) and units that are displayed in the charts.

You can use the Save as Snippet button to save the current chart and its series as a “snippet”. After it has

been saved, you can use the Snippets menu, located in the bottom left of the Timeline view to add this chart

as it is currently configured to any report.

You can use the Remove Chart button to remove the current chart from the Timeline view. If you have

saved the chart as a Snippet, you can add it back to the Timeline view later using the Snippets menu.

The Snippets menu also allows you to add a new, blank chart which you can fill in from scratch and to

import and export the snippets from/to a text file.

Power analysis

The ARM Energy Probe is designed to be a low impact, inexpensive solution to give you quick feedback on

the impact of your code on the system energy footprint.

If you have the ARM Energy Probe connected to your target and if you setup the path to the caiman binary

as instructed earlier, then you will also get a Power chart in the Timeline view. You will also see the

Current & Voltage charts of “Channel 0” presuming that the Current & Voltage options were selected in

the capture options. You can drag the Power chart upwards to get it closer to the top using a handle. If the

Energy Probe is measuring the total power going into the target, then the changes in CPU power usage may

get obscured by the power provided to other parts of the system.

page 75 of 99

The power data is correlated against the CPU Activity on the core. If the Energy Probe is measuring the

total power going into the device, the CPU only power may get obscured by the power provided to other

parts of the system. In this case the correlation may be slightly out by tens of milli-seconds. You can use the

energy probe alignment menu() located in the bottom left of the Timeline view to manually move

the power chart right and left on the x-axis if you think the correlation needs to be adjusted.

 Drag the Channel 0 Power chart up or down so that it is next to the Clock chart so that we can

correlate the power with frequency.

 Click on Clock and compare the graph variations against the power and try to analyze the power

consumption as per the frequency.

 Click on an application thread in the process bar and try to correlate the energy & power consumption

of that task.

To find out more about the energy probe setup see ARM Energy Probe setup in the appendix on page 99.

Call Paths view

 In the Samples HUD in the Timeline view, you can right click on a function name to bring up

navigation options. Find a cross-section where the do_3d32 function is listed in the Samples HUD, then

click on the function name to take you that function in the Call Paths view.

The Call Paths view displays the call paths taken by an application that were sampled. They are listed per

process in the view. If you followed the previous steps it should look similar to the screenshot below.

There are five columns in the view which display the time spent as per the total number of the samples taken

in that function / process.

 Self – The sampled time spent in that function only and not in its children as a total of the samples in

that process.

page 76 of 99

 % Self – The sampled time spent in that function only and not in its children as a percentage of the

samples in that process.

 Process – The sampled time spent in that function and its children as a total of the samples in that the

process..

 % Process – The sampled time spent in that function and its children as a percentage of the samples

in that the process.

 Total – The sampled time spent in that function as a total of the time of all processes.

The percentages are color-coded based on their value. Functions where a lot of time was spent are

highlighted in red.

The Stack column is an indication of the amount of stack used by that function.

 Selecting the name of a process, thread or function will display the top functions by time in the

bottom pane that are lower in the call path:

 All of the columns can be sorted by clicking on the column name. If you hold Shift while clicking on

a column name the clicked column will become a secondary sort key (which is shown by two dots under

the sort arrow). This works in all of the Streamline table views.

The Call Paths view will only display function names for code for which we have loaded the symbols. If the

symbols were not loaded then the data for those binaries will appear in the <anonymous> location.

 Here you can see how much time was spent inside shared libraries used by the application. You can

re-analyze the profile by adding more symbols for shared libraries. We will do this as an exercise later.

page 77 of 99

For the Call Paths to work the code needs to be built with frame pointers enabled. This allows the

Streamline’s gator daemon to reconstruct the call path taken by an application. In gcc the build argument is

-fno-omit-frame-pointer. The Call Graph and Stack views also require frame pointers.

Functions view

The Functions view displays a list of all the

functions that were sampled during the

profile session. The functions view is the

quickest way to find which functions are

your hot functions. If you’ve set the caliper

range in the Timeline view then only the

samples within the callipers will be reflected

in the Functions view.

 Select the Functions tab at the top of

your report.

 You can Shift- or Ctrl-click to select

multiple functions to see a total count of the self time in the Totals panel in the top right of the view.

The Instances column shows the number of times a function appears in separate call paths.

Next let’s go investigate the code inside one of our hot functions;

 Right click on the do_3d32 function and choose Select in Code View from the context menu.

Code view

Now the do_3d32 function

will be highlighted in blue in

the Code view.

(If the source file has not

been found by default you

can locate it by pressing the

() button or the “Click

here to locate it.” link to

browse the file system. You

can use the displayed path

name to help you locate the

file. This may happen if you

used a pre-built copy of xaos

instead of building it on your

host or if the source files are

page 78 of 99

in a different location now compared to when you built the application.)

Lines in the source code where many samples were taken are highlighted in red. Lines of code that don’t

have any percentages next to were not sampled at all in this profiling run. Profiling for longer periods of

time or at a higher sampling rate may give a better resolution in the source code.

You can also open up the disassembly for the code you are viewing.

 Click the Toggle Asm button () in the top right hand corner of the report. You can select a line or

lines of source code and the corresponding disassembly lines will be highlighted in the bottom. Vice

versa, you can also make a selection in the disassembly pane and the source above will be highlighted,

along with the other disassembly lines for that source line.

Notice the 2 More indicator in the screenshot. It indicates that there are two more disassembly instructions

highlighted above. It’s useful when compiler has moved the code out of order. You can click on the

indicator to scroll them into view.

Call Graph view

The Call Graph view is a graphical display showing which functions called each other. Hover above a

function name to see the number of samples taken on that function.

 Use the mini-map in the bottom left hand corner to scroll around the map. If the mini-map is in your

way you can disable it by selecting () in the top left corner.

 Enable Uncalled functions by clicking ().These functions were not in the call chain of any

sample.

 Enable System functions by clicking (). This displays runtime library functions and shared

libraries without symbols.

To help navigate the call graph right you can right click on a function to find options to highlight callers and

call paths.

page 79 of 99

 Right click on the do_3d32 function. Select Caller Tree. The call path for the function will be

highlighted in blue to help you navigate the call graph.

 

Stack view

The Stack view is designed to give the user an idea of the amount of maximum stack usage in a particular

thread. In this view you can also see and sort the stack usage of all the functions used by the application.

 Select the bar next to a particular thread to view the call chain and maximum stack usage for that

thread

The total may be larger than sum of the individual entries. This is due to recursive functions.

 Select the Show All button to view the stack usage of all the functions that were sampled.

Note : If all the functions that were sampled, then the Show All button will be greyed out.

page 80 of 99

Log view and Annotations

The Log view displays a list of all the text and visual annotations that were generated by the application

along with a time stamp for each and the time delta from the previous entry. You can filter the list on the

various columns using regular expressions. When you select an entry for a visual annotation the image is

displayed.

 Type X in the Message regex filter.

Now only the visual annotation log entries are shown (because only they contain an X in their messages) and

the values in the Delta column have been recalculated.

 Select one of the visual annotations and click the grow button in the top right corner of the visual

annotation thumbnail

 You can use the up and down arrow keys to replay through the images.

You can double-click an annotation entry and you will be taken to the Timeline view and the cross-section

marker will be set to the time of that annotation. You can right-click on an entry and choose Select

Process/Thread in Timeline or Select in Call Paths, which can be handy if you have many processes and

threads creating annotations.

In order to create annotations the application, libraries, kernel or kernel module code must be modified. The

Annotation features uses standard file IO to write to a virtual annotation file, /dev/gator/annotate.

Header files containing C style macros and Java classes are provided to annotate from both Java, C/C++

user space and also from kernel space. You can find the annotate header files by going to Help > ARM

Extras… > gator > annotate. To find out more about annotation see Help > Help Contents > ARM DS-5

Documentation > ARM Streamline > Annotate and the Log View.

Advanced Streamline

Reanalyze Streamline data

Because we did not include the C library in the initial analysis, all samples in it are shown together as

[libc-2.13.so]. We can add the C library and reanalyze the same capture to get a new report, showing

the C library function names.

page 81 of 99

Because the version of libc on the target is different than the copy we used to build against in the example

distribution, we need to get a copy of the target’s libc onto the host.

 Use My Target in the Remote.Systems view to copy Sftp files > Root > /lib/arm-linux-

gnueabi/libc-2.13.so to the host by dragging it to the xaos project in the Project Explorer view.

(You could also copy it by dragging it to a Windows Explorer window or use Local in the Remote

Systems view.)

This copy of libc does not have debug information so Streamline won’t be able to show the source code of

the C library (which would also require the source files), but there are still enough symbols to identify the

functions.

Captured streamline data and generated reports are shown in the

Streamline Data view. Captured data is identified by () and has a

name like Xaos_C01, whilst a generated report is identified by ()

and has a name like Xaos_C01_A01.

 Double-click the Xaos_C01 capture data in the Streamline

Data view.

 Click the Add ELF image from Workspace... (second) button (), choose the copy of libc-

2.13.so that you copied from the target and click the OK and Analyze buttons; then click the OK

button in the save report dialog:

page 82 of 99

A new report, Xaos_C01_A02, will be generated which will show the C library functions like memcpy

instead of [libc-2.13.so] as shown:

You can also change the High Resolution Timeline option when you reanalyze.

Because we did not include the kernel debug symbols in the analysis, the report shows all the kernel

functions lumped together as [kernel]. You can add the kernel debug symbols and re-analyze by double

clicking on the captured data Xaos_C01; clicking the Add ELF Image from File System (first) button()

and finding kernel\vmlinux-3.3.0-1000-ux500 and then clicking Analyze and then OK in the save

report dialog. Now the kernel functions are shown individually.

Streamline captures and analysis can also be scripted from the command line. Please refer to the Using

Streamline on the Command Line section in the documentation.

Import Captures

Captured data (a .apc directory) can be copied to a different location or host and imported into Streamline.

If you don’t have a target, there is a pre-captured report in the Xaos example project /xaos/Streamline

that you can use instead of capturing your own.

 Click the Edit Locations... button () to add the location

...\My Documents\DS-5 Workspace\xaos\Streamline to

the Streamline Data view.

 Create a report by double clicking the capture xaos-

multithreaded-VXquadA9-example and clicking Analyze.

and then OK in the save report dialog.

This report was generated on a Versatile Express Quad-Core Cortex A9 board. In the Timeline view you

will be able to expand the chart for each core and multithreaded

process.

 Expand the xaos process so that you can see the threads.

 Click the Toggle X-Ray button () to turn on X-Ray

mode.

Now by zooming in and hovering over the activity bars, you can

see which core the processes and threads were running on at any

given time.

You can export the report views from Streamline as text by

selecting (). This allows you analyse the captured data

outside of the Eclipse environment.

page 83 of 99

Troubleshooting Streamline

My target and host can't communicate

There are a number of things that could to check here

1) Make sure that your IP Address is in the same range as the target i.e. for the workshop set it to

169.254.0.1. The target defaults to 169.254.0.100.

2) If you’re on a laptop disable WiFi and any other network adapters that you are not using.

3) Try to ping the target from the host and the host from the target.

4) Check your firewall settings. If you have trouble with the target and host communicating and

your host is running a firewall you may need to configure it to allow network traffic from the

target (for example, make IP address 169.254.0.100 a "friend" or allow Xming in Inbound

Rules). You may need to quit and restart Xming after the change.

Xaos does not appear even though I can ping the target

 1) Make sure that you selected No access control when you ran XLaunch.

page 84 of 99

Back to Debugging

If you have enough time, here a a few more topics about debugging you might be interested in.

Debugging an application that is already running

In the examples above, when we started debugging the application it was not running yet and we started a

new copy of the application to debug. It’s also possible to attach the debugger to an application that is

already running.

 First disconnect () any connected debug configuration in the Debug Control view. You can

remove () it from the Debug Control view if you want. The DS-5 Debugger can have multiple

connected debug configurations at the same time , so it’s not strictly necessary to disconnect any existing

debug configurations, but it can be confusing, especially if you're debugging multiple copies of the same

application.

 If the Terminals view is not already open, use Window > Show View… > Other… > Remote

Systems > Terminals to open it.

 Use the Terminals view to start gnometris on the target without gdbserver (as one command):
 /home/linaro/gnometris --display=169.254.0.1:0 &

 Start a New Game and play it for a short while.

We need to change the debug configuration so that it uses Connect only instead of trying to debug from

main. We will do this by copying the existing configuration so that we can have both configurations handy.

You can just leave the game running.

 Choose Run > Debug Configurations… to open the Debug Configurations dialog.

 Select the gnometris configuration that was created earlier and click the duplicate button ().

 Change the name from gnometris (1) to gnometris-attach.

 In the Connection pane, set the Debug operation to Connect to already running gdbserver and

put the target IP address, 169.254.0.100, in the Address field.

 In the Files pane, create a Load symbols from file entry in the Files list by clicking the

Workspace... button and choosing the gnometris file at the top-level of the gnometris project.

 In the Debugger pane, choose Connect only instead of Debug from symbol.

 Click the Apply button to save the changes and click the Close button to close the dialog.

The gnometris-attach debug configuration appears in the Debug Control view. It is currently

disconnected.

Now we'll start gdbserver and attach it to the running game:

 On the target, execute the command:
 gdbserver --attach :5000 $! &

The $! represents the process id of last command that was started in background, with a trailing &. In

our case that was the /home/linaro/gnometris command. The output should be something like:
 Attached; pid = 1280

 Listening on port 5000

The game stops when gdbserver attaches to it. gdbserver is waiting for the debugger to connect.

 Double-click the gnometris-attach debug configuration in the Debug Control view to connect to the

gdbserver. The Terminals view will show:
 Remote debugging from host 169.254.0.1

You can also connect by selecting the gnometris-attach configuration and clicking the Connect ()

button or by or by selecting the gnometris-attach configuration in the Debug Configurations dialog

and clicking the Debug button.

page 85 of 99

At this point the game will be stopped at some arbitrary point, you can now set breakpoints, run and debug

it. When attaching to an already running application, the debugger won't initially know about shared

libraries that the application has already loaded or threads that were created before gdbserver was attached.

You can execute the sharedlibrary command in the Commands view to tell the debugger to learn about all

currently loaded shared libraries.

Advanced Debug Configurations

The initial temporary breakpoint can be set in the debug configuration with Debug from entry point or

Debug from symbol. It can also be set using the command line or scripts. Execution of the application

typically starts in the dynamic loader, ld-linux.so, which loads and initializes the shared libraries and then

jumps to the application's entry point which then executes various library initialization routines before

arriving at the main function.

We can change where the initial temporary breakpoint is placed by changing the setting in the debug

configuration, for example if we use Tetris::gameNew instead of main then when debugging starts

Gnometris would not stop at main but would open its window and run until we executed the New Game

(Ctrl+N) command. The initial temporary breakpoint is removed after it is hit.

If we want the application to start running and not stop anywhere in particular we can choose Connect only

and add run as a command to execute in the Debugger tab of the debug configuration. In this case we'll

need to use the Interrupt button (), a breakpoint or perhaps a signal to stop the application.

Debugging Threads (“extra credit”)

Unfortunately Gnometris only has a single thread so it’s hard to show the thread features of the debugger.

DS-5 contains a threads example. If you have some time left, you can import it, build it and debug it

according to the instructions its readme.html file. To run the threads example on the target, you'll need to

create a debug configuration for it, like we did for Gnometris; but threads doesn’t need use shared libraries

or need any arguments. There will be a threads-RTSM-example debug configuration that uses the RTSM.

You can put a breakpoint in the accumulate function which is run in multiple threads

The threads are displayed under the debug configuration in the Debug Control view. You can control the

way threads are displayed.

 Choose Flat from the Thread Presentation submenu of the Debug Control view’s drop-down menu

():

page 86 of 99

Below each thread will be the frames of its call stack. You can change the debugger’s focus from one thread

to another by clicking on the different threads. You can collapse all of the threads by clicking the Collapse

All button ().

And you probably noticed that you can make a breakpoint apply only to one or more specific threads by

using the Breakpoint Properties dialog.

Debugging on the RTSM

If you've still got time left, you can try using the gnometris-RTSM-example debug configuration to debug

the game running on the Real Time Sysrtem Model (RTSM). The same binaries (application and shared

libraries) will work on the RTSM. Check below first if your host is running Windows Vista or Windows 7

(or later?). You can find the gnometris-RTSM-example debug configuration in the Debug Configurations

dialog. You can select it, inspect its various settings (don't change them) and click the Debug button.

Another way to start the gnometris-RTSM-example debug configuration is to choose Add Configuration

(without connecting) … from the Debug Control view’s drop-down menu () and then select gnometris-

RTSM-example and click OK. Now gnometris-RTSM-example appears in the Debug Control view and

you can double-click it to start it as usual.

Using the RTSM on Windows Vista or Windows 7

The RTSM uses a telnet client for its simulated serial ports. On Windows Vista and Windows 7 (and later?),

the telnet client is disabled by default. Before you use the RTSM you will need to enable it by choosing

Start > Control Panel > Programs > Programs and Features > Turn Windows features on or off and

checking Telnet Client and clicking OK.

Other DS-5 features you didn't see

Due to time, hardware or other constraints there are some DS-5 features that we haven't had a chance to

show in this workshop. We'll give a brief description here to let you know about them.

 Screen view: There is a Screen view that can display target memory as a picture. For example,

displaying an LCD RGB565 data buffer.

 Target view: There is a Target view that displays the properties of the target.

 Command-line debugging: the debugger can be driven from the command line and/or scripts instead

of using Eclipse.

Finished!

Thanks for your time. Please give us feedback on either this workshop or the
tools.

page 87 of 99

Appendix A: Setup

Host Setup

DS-5 can be used on Windows and Linux hosts. If your host has not already been setup for you then you

will need to:

 Download and install an evaluation copy DS-5 by following the Download Now link from

http://www.arm.com/ds5. Also download the DS-5 Linux Distribution Example found in a file

named DS500-BN-00009-r5p0-13rel0.zip which is a separate download located “next to” the DS-

5 installer.

 Obtain and install an evaluation license (covered below)

 Adjust the host’s networking so that it can communicate with the target. TCP/IP (for example

Ethernet) is used to communicate with the target when doing application level debug and Streamline

profiling. The rest of this workshop assumes that the host’s IP address is 169.254.0.1 and that the

target’s IP address is 169.254.0.100. If your addresses are different you will need to make the

appropriate adjustments to the instructions in this workshop.

 If you are using a Windows host you will need to install and start an X server such as Xming (see

below). The Gnometris and Xaos applications use the X server to display a window. The Public

domain version of Xming can be downloaded from http://www.straightrunning.com/XmingNotes.

 If your host is running firewall software it may need special configuration to allow full network

communication with the target.

Importing projects

If you already have an Eclipse project with the same name, for example if you've already imported an older

version, you won't be able to import it again. You can either rename or delete the existing Eclipse projects if

you want to import them again. If you delete them, you should check the Delete project contents on disk

checkbox. If you have deleted the Eclipse project, but the project folder is still in the workspace directory,

for example if you didn’t check Delete project contents on disk, then you will need to delete the project

folder “by hand” before you can import it again.

Importing distribution

The distribution project doesn't build anything itself. It contains header files and copies of shared

libraries from the target filesystem that are needed to compile and link the gnometris project. Collecting

these shared libraries and headers into distribution project is a handy way for the gnometris project to

be able to find and use them. The distribution project is located in a separate .zip file that is not

installed by the DS-5 installation and needs to be downloaded separately. It is listed as DS-5 Linux

Distribution Example at https://silver.arm.com/browse/DS500 and the resulting file name is DS500-BN-

00009-r5p0-13rel0.zip.

 Choose File > Import... > General > Existing Projects into Workspace > Next >

 Choose Select archive file and use the Browse... button to select DS500-BN-00009-r5p0-
13rel0.zip

http://www.arm.com/ds5
http://www.straightrunning.com/XmingNotes
https://silver.arm.com/browse/DS500

page 88 of 99

The distribution project will be the only project and it will be checked.

 Click the Finish button. If the Finish button is disabled then Eclipse will put a message explaining

why at the top of the Import dialog.

Importing Gnometris

Now import the gnometris project which is in a

different .zip file:

 Choose File > Import... > General > Existing

Projects into Workspace > Next >

 Choose Select archive file and use the

Browse... button to select C:\Program Files\DS-
5\examples\Linux_examples.zip

 Click the Deselect All button; then check only

gnometris. If you’re doing the Streamline section

of the workshop, you can also check xaos to import

it now or wait until later.

 Click the Finish button.

page 89 of 99

Changing Gnometris

The Gnometris example project is supplied pre-built, but we are going to make some changes to the

Gnometris code so that Gnometris will update its display more often so that we can see the effects of some

of our debugging actions. If this workshop was setup on your host for you, this may already have been

done.

 Expand gnometris > gnome-games-2.26.2 > gnometris in the Project Explorer view

 Double-click on tetris.cpp and scoreframe.cpp to open them

For the next step you can copy the text from readme.html located in the top level of the gnometris

project folder. (Click on the link to Debugging the Gnometris application executable with gdbserver and

scroll to under point number 13.)

 In tetris.cpp, insert the three lines marked //_ARM_ refresh ... below into both

Tetris::timeoutHandler() near line 933 and Tetris::keypressHandler() near line 1000. You can

use the scrollbar and watch the line numbers or use Navigate > Go to line ... (Ctrl+L).

#ifndef HAVE_CLUTTER

t->field->redraw();

t->scoreFrame->scoreLines(0); //_ARM_ refresh score

t->preview->previewBlock(blocknr_next, rot_next, color_next); //_ARM_ refresh next block

gtk_widget_queue_draw(t->preview->getWidget()); //_ARM_ refresh display

#endif

Note: the Gnometris application is built with the macro HAVE_CLUTTER not defined.

 In scoreframe.cpp and comment out the lines 123 and 124 in ScoreFrame::scoreLines():
//case 0:

 //return level;

 Save the changes and choose Project > Build Project. You can see any messages or errors from

building in the Console view.

Now you can resume where you left off.

page 90 of 99

Importing Xaos

The Xaos example project is in a different .zip file from the distribution project:

 Choose File > Import... > General > Existing Projects into Workspace > Next >

 Choose Select archive file and use the Browse... button to select C:\Program Files\DS-

5\examples\Linux_examples.zip

 Click the Deselect All button; then check xaos.

 Click the Finish button. If the Finish button is disabled then Eclipse will put a message explaining

why at the top of the Import dialog.

Now xaos appears in the Project Explorer view. The Xaos example project is supplied pre-built, but we’ll

clean and rebuild it to show that we can and so that debug information will refer to the correct pathnames on

your host (instead of some host in Cambridge). You won’t be able to rebuild Xaos unless you’ve imported

the distribution project as described above.

 Right-click on xaos in the Project Explorer view and choose Clean Project; then right-click it again

a choose Build Project. You can see any messages or errors from building in the Console view.

Now you can resume where you left off.

Creating a Target Connection

We will establish a connection to the target using Eclipse's Remote Systems Explorer (RSE) so that we can

browse its file system and create a terminal connection.

 If the Remote Systems view is not open, you can open it by choosing Window > Show View >

Other... > Remote Systems > Remote Systems in any perspective.

 Click on the tab of the Remote Systems view to bring it to the front.

 Create a new connection by clicking the New Connection button ()

 Choose General > Linux > "Next >"; put the target's IP address, 169.254.0.100 in the Host name

field and use My Target as the Connection name; click "Next >". (If target is using a different IP

address, for example, if your target is connected to a network with a DHCP server, you'll need to

determine its IP address by using the serial console or a monitor, keyboard and mouse.)

page 91 of 99

 Check ssh.files then click the Finish button. If you click "Next >" instead of Finish, you want the

rest of the default settings: processes.shell.linux, ssh.shells, and ssh.terminals.

Now you can resume where you left off.

page 92 of 99

Appendix B: Snowball

Board details and connections

The Snowball board contains a ST-Ericsson Nova A9500 processor (Dual Cortex A9 + Mali 400 GPU). It

has 1GB DDR and a 4 or 8 GB eMMC. (“eMMC” stands for “embedded MMC” and is Flash memory built

into the Snowball which is accessed as if it were an MMC or SD card.) The board is powered by a 5 Volt

power supply. For more information please see www.igloocommunity.org

The following instructions are based on using the 12.03 (that is March 2012) Oneiric Linaro release on the

target (see www.linaro.org). There may be differences, for example different file or directory names, in

later Linaro releases.

Note that the builtin eMMC can be used instead of the microSD card.

Write a target image to a microSD card

We will write a microSD card (4GB or larger) with an image for the target. The image will contain a

bootloader (U-Boot), Linux kernel and root filesystem.

 Using your host, download an image for your target from releases.linaro.org. For a Snowball target,

download http://releases.linaro.org/images/12.03.1/oneiric/ubuntu-desktop/snowball_sd-ubuntu-

2012.03.1.img.gz to your host and decompress it. (When decompressed it’s 3GB).

 Now write the decompressed image to a microSD card. On Windows you can use a program like

Win32DiskImager https://launchpad.net/win32-image-writer.

 With the target power disconnected, install the microSD card in the target.

Serial setup

The Snowball uses a serial console over USB, which we will communicate with using an Eclipse Terminal

view. This is different, but confusingly similar to the Terminals view in Remote Systems Explorer which

use ssh over TCP/IP instead of serial.

S
k

ip
 t

h
es

e
st

ep
s

if
 t

h
e

ta
rg

et
 i

s

a
lr

ea
d

y
 s

et
u

p
 f

o
r

y
o
u

http://www.igloocommunity.org/
http://www.linaro.org/
http://releases.linaro.org/images/12.03.1/oneiric/ubuntu-desktop/snowball_sd-ubuntu-2012.03.1.img.gz
http://releases.linaro.org/images/12.03.1/oneiric/ubuntu-desktop/snowball_sd-ubuntu-2012.03.1.img.gz
https://launchpad.net/win32-image-writer

page 93 of 99

 Connect a USB mini-B cable from your host to the mini USB port next to the 20-pin JTAG connector

(shown at the top in the picture above).

 Connect the 5V power supply to the target, but don’t push the blue

power button yet.

 On a Windows host, you may need to install driver software for the

FTDI USB-to-serial chip; see www.ftdichip.com/Drivers/VCP.htm

 Open the Terminal view by choosing Window > Show view >

Other… > Terminal > Terminal.

 Click on the Settings button () to open the Terminal Settings

dialog.

 Change the View Title to Serial to make it easier to keep track of.

 Set the Port to the name of the serial port on the host (see below).

 Set the Baud Rate to 115200.

 Use the defaults of 8 data bits, 1 stop bits, no parity and no flow

control.

Click OK the Serial view will connect to the port but there won’t be

any output yet.

You can drag the tab of the Serial view to the right edge of the

window to dock it there so that it it’s easier to see what it’s doing and

switch to it.

To determine the COM port on a Windows host:

 Go to the Windows Control Panel > Device Manager, expand the ‘Ports (COM & LPT)’ section to

find the USB Serial Port that you need to connect to. Your COM port might be different than

“COM27”:

For example on an Ubuntu Linux host:

 Verify that the serial port is recognized for example run dmesg | grep ttyUSB

 Use the device name found, for example /dev/ttyUSB0, to connect to the serial port.

http://www.ftdichip.com/Drivers/VCP.htm

page 94 of 99

The Snowball’s serial console is a root shell, but there is no root password on Ubuntu systems. When

you’re not using the serial console (for instance when you use a Remote Systems Explorer terminal), you

can login as user=linaro, password=linaro and use sudo.

Flash an eMMC image to the board

You need to do this if your snowball contains firmware or start-up files which are fairly old or incompatible

with later Linux releases. The firmware or start-up files can be security aware and may disable Linux kernel

JTAG debug. You can turn it off the security checks in the Linux kernel, but you will need to rebuild the

kernel to do this. The eMMC images provided from www.igloocommunity.org contains the correct firmware

which will allow you to debug the Linux kernel.

To flash an eMMC image you will need a Linux host and the riff tool installed. Please see

http://www.igloocommunity.org/support/Flashing_howto

The eMMC image also contains a “magic” configuration partition

(http://www.igloocommunity.org/support/ConfigPartitionOverview).

More information about the Snowball boot process can be found here

http://www.igloocommunity.org/support/Booting_Guide

Linaro Linux target setup

Now we will use the target itself to download some required software packages from the Internet.

 Use the Serial view to connect to the target (see Serial setup above on page 92).

 Connect the target to an Ethernet network with Internet access before powering up/booting the target.

 Press the blue power button. Messages should appear on the serial console as the target boots.

When the target has booted it will prompt root@linaro-ubuntu-desktop:~#. You can press return in case

the prompt got lost in the messages.

 Install the Streamline gator daemon and driver by executing these commands on the target
 apt-add-repository -y ppa:linaro-maintainers/arm-ds5

 apt-get -y update

 apt-get -y install gator

 Install ssh by executing this command on the target’s serial console:
 apt-get -y install ssh

If you need to use a newer version of gator than is available from the Linaro Package Respository via apt-

get then you can build it yourself on the target by following these steps:

 Install ssh and g++:
 apt-get -y update

 apt-get -y install ssh g++

 Setup an RSE connection and copy .../DS-5/arm/gator/driver-src and .../DS-

5/arm/gator/daemon-src from the host to /home/linaro on the target.

 Build the gator driver and daemon:
 cd /home/linaro

 tar -xzf driver-src/gator-driver.tar.gz

 make -C /usr/src/linux-headers-`uname -r` ARCH=arm modules M=`pwd`/gator-driver

 tar -xzf daemon-src/gator-daemon.tar.gz

 make -C gator-daemon CFLAGS='-O3 -Wall -Werror -mthumb-interwork'

 Install the just-built gator driver and daemon:
 stop gator-daemon

 rmmod gator.ko

 mv /lib/modules/3.3.0-1000-ux500/extra/gator.ko{,.orig}

 cp gator-driver/gator.ko /lib/modules/3.3.0-1000-ux500/extra/gator.ko

 mv /usr/sbin/gatord{,.orig}

 cp gator-daemon/gatord /usr/sbin/gatord

 start gator-daemon

S
k

ip
 t

h
e
se

 s
te

p
s

if
 t

h
e

ta
rg

et
 i

s
a

lr
ea

d
y

 s
et

u
p

 f
o

r
y

o
u

http://www.igloocommunity.org/
http://www.igloocommunity.org/support/Flashing_howto
http://www.igloocommunity.org/support/ConfigPartitionOverview
http://www.igloocommunity.org/support/Booting_Guide

page 95 of 99

U-Boot download and debug setup

You need to do this setup if you are going to do the sections on bare-metal debugging of U-Boot, unless it’s

been done for you.

The following instructions are based on the 12.03 Oneiric Linaro release and may differ slightly (for

example directory names) in later Linaro releases. It also assumes that you’ve completed the previous

section to install Linaro 12.03 to your target.

In this section we will download the U-Boot and kernel sources for the Snowball board using the Ubuntu

package manager. We’ll also build the U-Boot image on the target. Once this is completed we will create

projects for these inside DS-5 and copy the sources from the target to our host so that we can use it for

debug.

To debug U-Boot on the Snowball board we need to get the sources and build U-Boot. You can do this

natively on your target by following these steps:

 Use the Serial view to connect to the target (see Serial setup above on page 92).

 Connect the target to an Ethernet network with Internet access before powering up/booting the target.

 Turn on the device and boot the Linaro Linux image

 In the serial port change directory to /home/linaro
cd /home/linaro

 Download U-Boot
apt-get -y source u-boot-ux500

 Build U-Boot
cd u-boot-ux500-2009.11

@@@ The next line is to work around a bug
sed -e 's/icache_enable/\/\/icache_enable/' \

 cpu/arm_cortexa9/db8500/cpu.c > cpu.c && \

 mv cpu.c cpu/arm_cortexa9/db8500/cpu.c

make u8500_snowball_config

make -j2

make clean

The make clean is just to remove some object and library files that we don’t need for debugging.

 In DS-5 Eclipse create a new General project File > New Project > General > Project and name the

project u-boot-ux500

 Open the Remote Systems view and copy the folder /home/linaro/u-boot-ux500-2009.11 into

the u-boot-ux500 project in the Project Explorer view. (If you have not yet connected to your target

please see Creating a target connection in the appendix on page 90) It will take a few minutes to copy

all the sources to your host.

Linux kernel download and debug setup

You need to do this setup if you are going to do the sections on kernel and module debugging, unless it’s

been done for you.

S
k

ip
 t

h
e
se

 s
te

p
s

if
 t

h
e

ta
r
g

et
 i

s

a
lr

ea
d

y
 s

et
u

p
 f

o
r

y
o

u

page 96 of 99

To debug the Linux kernel we need to use the target to fetch the debug symbols (vmlinux) and the

corresponding sources:

 Use the Serial view to connect to the target (see Serial setup above on page 92).

 Connect the target to an Ethernet network with Internet access before powering up/booting the

target.

 Turn on the device and boot the Linaro Linux image

 In the serial port change directory to
cd /home/linaro

 In order to find the kernel sources, duplicate the deb line in

/etc/apt/sources.list.d/hwpack.linaro-landing-team-ste.list and replace deb with deb-
src

 In the serial port download the kernel debug symbols (vmlinux)
apt-get -y --force-yes install linux-image-$(uname -r)-dbgsym

 Find the vmlinux file containing the kernel image and debug symbols and copy it to the current

directory. Then create a copy with only the debug symbols:
cp $(dpkg -L linux-image-$(uname -r)-dbgsym | grep vmlinux) /home/linaro

objcopy --only-keep-debug vmlinux-3.3.0-1000-ux500 \

 vmlinux-3.3.0-1000-ux500.debug_only

 Download the kernel sources
apt-get --force-yes -d source linux-image-$(uname -r)

 In DS-5 Eclipse create a new General project File > New Project > General > Project and call

the project kernel

 Open the Remote Systems view and copy vmlinx-3.3.0-1000-ux500.debug_only and linux-

ux500_3.3.0-1000.2.tar.gz to the kernel project in the Project Explorer view (If you have not

yet connected to your target please see Creating a target connection in the appendix on page 90) It

will take a few minutes to copy all the sources to your PC.

 Import the kernel sources by right clicking on the kernel project folder and choosing Import >

General > Archive File > Next; click on the Browse… button and choose the kernel source archive

linux-ux500_3_3_0.1000.2.tar.gz in your workspace. Click Finish to start the import, then go

S
k

ip
 t

h
e
se

 s
te

p
s

if
 t

h
e

ta
rg

e
t

is

a
lr

ea
d

y
 s

et
u

p
 f

o
r

y
o

u

page 97 of 99

have some tea – this will take some time:

You will get a message that says you encountered errors during the import; ignore it and click Cancel to not

import the source again. This is due to Windows not understanding symbolic links in the archive nor file

names that differ only in upper/lower case.

Kernel module debug (modex) build and setup

DS-5 ships with a kernel module debug example called modex. To run the example the kernel module needs

to be built against the kernel on your target. We can do this by copying the source to the target and building

the example natively.

 Choose File > Import... > General > Existing Projects into Workspace > Next >

 Choose Select archive file and use the Browse... button to select C:\Program Files\DS-

5\examples\Linux_examples.zip

 Click the Deselect All button; then check kernel_module.

 Click the Finish button. If the Finish button is disabled then Eclipse will put a message explaining

why at the top of the Import dialog.

Now kernel_module appears in the Project Explorer view. The kernel module example project is supplied

pre-built for the RSTM and Beagleboard images provided in DS-5 but not for Snowball. You won’t be able

to rebuild the kernel module on a windows machine and you also need the kernel headers to build it. So we

will rebuild it on the target.

 Copy the kernel_module project over to your target by dragging it into the Remote Systems

connection to the target

page 98 of 99

Next we’ll build the kernel module natively on the target and then copy it back onto our PC. In your Serial

view to the target run the following commands

 Change directory to the kernel module
cd /home/linaro/kernel_module

 Download the kernel headers from the internet to the target
apt-get –y ––force–yes install linux-headers-$(uname -r)

 Re-configure the kernel
make -C /usr/src/linux-headers-$(uname –r) oldconfig

 Build the kernel module
make -C /usr/src/linux-headers-$(uname –r) M=$(pwd) modules

 Copy modex.ko back to your host PC so that you have the symbols

You are now ready to debug the kernel module example.

Setting a static IP address

You can set a static IP address on the target by editing /etc/network/interfaces on the target and adding

the following lines to the file. You can change 169.254.0.100 to the address that you want the target to

use.
 auto eth0

 iface eth0 inet static

 address 169.254.0.100

 netmask 255.255.0.0

You’ll need to reboot the target for the changes to take effect. To make sure the changes are written to the

disk (microSD card) execute the commands sync;sync on the console before you reboot it.

With the eth0 entry in /etc/network/interfaces NetworkManager will no longer attempt to manage the

interface. For use on a cross-over cable, you can now use ifup eth0 to enable the interface with the static

IP address and ifdown eth0 to disable it. If you attach the Ethernet port to a network with a DHCP server,

you can use dhclient -1 eth0 to get an address from the DHCP server.

Note: For the Ethernet to be setup automatically you need to have the Ethernet cable connected when you

boot the target.

S
k

ip
 t

h
e
se

 d
o

w
n

lo
a

d

st
ep

s
if

 t
h

e

ta
rg

et
 i

s
a

lr
ea

d
y
 s

et
u

p
 f

o
r

y
o
u

page 99 of 99

ARM Energy Probe setup

The ARM Energy probe can measure the power of up the three channels or measurement points at a time. If

your board has power measurement points you can connect the probe to those points and specify the resistor

values in the Capture & Analysis Options dialog. The snowball board does not contain any soldered on

measurement points for us to use. Instead, we will use the T-Piece (which contains a 20mOhm shunt

resistor) to measure the total power consumed by the board.

Connect the energy probe and T-piece in-line with the power supply as shown below:

When you first connect the probe to your PC you will need to install a driver from the DS-5 installation. On

windows this is typically C:\Program Files\DS-5\sw\energy_probe. Once the driver is installed, the

probe connected and the target powered on the Energy Probe will display a green LED.

